
'.

:M

. . .■

,

s
.'

/

"

Prime C0B0L85
Reference Guide
Re/ease 1.0-22.0

-

DOC70766-1LA

COBOL85 Reference Guide

First Edition

Matthew Carr

This document reflects the software operation of the Prime Computer
and its supporting systems and utilities as implemented at
Master Disk Revision 22.0 (Rev. 22.0).

Prime Computer, Inc., Prime Park, Natick, MA 01760

Copyright Information
The information in this document is subject to change without notice and should not be construed as a
commitment by Prime Computer, Inc. Prime Computer, Inc. assumes no responsibility for any errors that may
appear in this document.
The software described in this document is furnished under a license and may be used or copied only in
accordance with the terms of such license.

Copyright © 1988 by Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760
PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime Computer, Inc.
DISCOVER, EDMS, FM+, INFO/BASIC, INFORM, Prime INFORMATION, Prime INFORMATION
CONNECTION, Prime INFORMATION EXL, MDL, MIDAS, MIDASPLUS, MXCL, PRIME EXL, PRIME
MEDUSA, PERFORM, PERFORMER, PRIME/SNA, PRIME TIMER, PRIMAN, PRIMELINK, PRIMENET,
PRIMEWAY, PRIMEWORD, PRIMTX, PRISAM, PRODUCER, Prime INFORMATION/pc, PST 100, PT25,
PT45, PT65, PT200, PT250, PW153, PW200, PW250, RINGNET, SIMPLE, 50 Series, 400, 750, 850, 2250,
2350, 2450, 2455, 2550, 2655, 2755, 4050,4150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, and 9955II
are trademarks of Prime Computer, Inc.

SyncSort is a trademark of Syncsort Incorporated.

Printing History
First Edition (DOC10166-1LA) October 1988 for Release 1.0-22.0

Credits
Project Editor: Barbara Fowlkes
Project Support: Wendy Blatt, Andre Lacroix, Roy Lemmon, Margaret W. Taft
Project Illustrator: Anna Spoerri
Document Preparation: Kathy Normington, Mary Mixon
Production: Judy Gordon
Composition: Julie Cyphers, Sharon Temple
Design: Leo Maldonado

How to Order Technical Documents
Follow the instructions below to obtain a catalog, a price list, and information on placing orders.
United States Only: Call Prime Telemarketing, toll free, at 800-343-2533, Monday through Friday, 8:30 a.m. to
5:00 p.m. (EST).
International: Contact your local Prime subsidiary or distributor.

Customer Support Center
Prime provides the following toll-free numbers for customers in the United States needing service:
1-800-322-2838 (Massachusetts)
1-800-541-8888 (Alaska and Hawaii)
1-800-343-2320 (within other states)
For other locations, contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of this book. Address any
additional comments on this or other Prime documents to:
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

r

•

r

Contents

'

-

'

~

A b o u t T h i s B o o k x i i i

1 O v e r v i e w o f C O B O L 8 5 1 - 1
L a n g u a g e S t a n d a r d s 1 - 1
P r i m e E x t e n s i o n s t o t h e A N S I S t a n d a r d 1 - 1
C O B O L 8 5 o n P r i m e C o m p u t e r s 1 - 2
P r o g r a m E n v i r o n m e n t s 1 - 3
S y s t e m R e s o u r c e s S u p p o r t i n g C O B O L 8 5 1 - 4

2 C o m p i l i n g t h e P r o g r a m 2 - 1
T h e C O B O L 8 5 C o m m a n d 2 - 1
C o m p i l e r E r r o r M e s s a g e s 2 - 2
C o m p i l e r O u t p u t 2 - 3
C O B O L 8 5 D e f a u l t F i l e - n a m i n g C o n v e n t i o n s 2 - 3
C o m p i l e r O p t i o n s 2 - 5

3 L i n k i n g a n d E x e c u t i n g P r o g r a m s 3 - 1
U s i n g B I N D t o C r e a t e a n E P F 3 - 1
O t h e r U s e f u l B I N D S u b c o m m a n d s 3 - 3
R u n n i n g Y o u r P r o g r a m 3 - 5

4 E l e m e n t s o f C O B O L 8 5 4 - 1
Divisions of a COBOL85 Program: A Summary 4-1
F o r m a t N o t a t i o n 4 - 5
C o d i n g R u l e s 4 - 7
P u n c t u a t i o n a n d S e p a r a t o r s 4 - 8
T h e C O B O L 8 5 C h a r a c t e r S e t 4 - 9
T h e P r i m e E x t e n d e d C h a r a c t e r S e t 4 - 1 0
c h a r a c t e r - s t r i n g s 4 . 1 1
W o r d F o r m a t i o n 4 . 1 1
R e s e r v e d W o r d s 4 . 1 2
I m p l e m e n t o r - n a m e s 4 - 1 4

Programmer-defined Words 4-14
Literals 4-17
Data Levels 4-20
Classes and Categories of Data 4-20
Relationship of Classes and Categories of Data 4-21
Data Representation and Alignment 4-22
Algebraic Signs 4-29
Qualification of Names 4-29
Arithmetic Expressions 4-30
Conditional Expressions 4-34
Variable-length Records 4-42
Table Handling 4-44
Exception Handling 4-56
File Status Codes 4-57

5 The IDENTIFICATION DIVISION 5-1
IDENTIFICATION DIVISION 5-1
IDENTIFICATION DIVISION Example 5-3

6 The ENVIRONMENT DIVISION 6-1
ENVIRONMENT DIVISION 6-1
CONFIGURATION SECTION 6-2
SOURCE-COMPUTER 6-2
OBJECT-COMPUTER 6-3
SPECIAL-NAMES 6-5
INPUT-OUTPUT SECTION 6-8
FILE-CONTROL 6-8
I-O-CONTROL 6-12
ENVIRONMENT DIVISION Example 6-13

7 The DATA DIVISION 7-1
DATA DIVISION 7-1
FILE SECTION 7-2
WORKING-STORAGE SECTION 7-3
LINKAGE SECTION 7-4
file-description-entry 7-6
COMPRESSED/UNCOMPRESSED — Prime Extension 7-7
EXTERNAL 7-8
BLOCK CONTAINS 7-9
CODE-SET 7-9
DATA RECORDS 7-9
LABEL RECORDS 7-10
RECORD 7-10
RECORDING MODE 7-13
VALUE OF FILE-ID 7-14

VI

r e c o r d - d e s c r i p t i o n - e n t r y 7 - 1 6
l e v e l - n u m b e r 7 - 1 8
d a t a - n a m e o r F I L L E R 7 - 2 1
B L A N K W H E N Z E R O 7 - 2 2
E X T E R N A L 7 - 2 3
J U S T I F I E D 7 - 2 5
O C C U R S 7 - 2 6
P I C T U R E 7 - 3 0
R E D E F I N E S 7 - 3 8
R E N A M E S 7 - 4 0
S I G N 7 - 4 1
S Y N C H R O N I Z E D 7 - 4 3
U S A G E 7 - 4 3
V A L U E 7 - 4 5
D A T A D I V I S I O N E x a m p l e 7 - 4 8

T h e P R O C E D U R E D I V I S I O N 8 - 1
P R O C E D U R E D I V I S I O N 8 - 1
D e c l a r a t i v e S e c t i o n s 8 - 4
S c o p e T e r m i n a t o r s 8 - 4
Arithmetic Statements in the PROCEDURE DIVISION 8-6
P r o c e d u r e S t a t e m e n t s 8 - 9
A C C E P T 8 - 9
A D D 8 - 1 1
A L T E R 8 - 1 3
C A L L 8 - 1 4
C A N C E L 8 - 1 4
C L O S E 8 - 1 5
C O M P U T E 8 - 1 5
C O N T I N U E 8 - 1 6
D E L E T E 8 - 1 7
D I S P L A Y 8 - 1 7
D I V I D E 8 - 2 0
E J E C T — P r i m e E x t e n s i o n 8 - 2 3
E N T E R 8 - 2 3
E X H I B I T 8 - 2 3
E X I T 8 - 2 4
E X I T P R O G R A M 8 - 2 4
G O T O 8 - 2 5
G O B A C K — P r i m e E x t e n s i o n 8 - 2 6
I F 8 - 2 6
I N S P E C T 8 - 2 9
M E R G E 8 - 3 6
M O V E 8 - 3 6

M U L T I P L Y 8 - 3 9
N O T E — P r i m e E x t e n s i o n 8 - 4 0
O P E N 8 - 4 1
P E R F O R M 8 - 4 1
R E A D 8 - 5 0
R E A D Y T R A C E — P r i m e E x t e n s i o n 8 - 5 1
R E L E A S E 8 - 5 3
R E S E T T R A C E — P r i m e E x t e n s i o n 8 - 5 3
R E T U R N 8 - 5 3
R E W R I T E 8 - 5 3
S E A R C H 8 - 5 4
S E E K — P r i m e E x t e n s i o n 8 - 5 9
S E T 8 - 5 9
S K I P — P r i m e E x t e n s i o n 8 - 6 1
S O R T 8 - 6 2
S T A R T 8 - 6 2
S T O P 8 - 6 3
S T R I N G 8 - 6 4
S U B T R A C T 8 - 6 7
U N S T R I N G 8 - 6 9
U S E 8 - 7 3
W R I T E 8 - 7 4
P R O C E D U R E D I V I S I O N E x a m p l e 8 - 7 5

9 S e q u e n t i a l F i l e s 9 - 1
S e q u e n t i a l F i l e C o n c e p t s 9 - 1
C o m m o n O p e r a t i o n s o n S e q u e n t i a l F i l e s 9 - 4
P R O C E D U R E D I V I S I O N 9 - 4
C L O S E 9 - 4
O P E N 9 - 5
R E A D 9 - 7
R E W R I T E 9 - 9
W R I T E 9 - 1 0
E x a m p l e 9 - 1 2

1 0 I n d e x e d F i l e s 1 0 - 1
I n d e x e d F i l e C o n c e p t s " 1 0 - 1
C o m m o n O p e r a t i o n s o n I n d e x e d F i l e s 1 0 - 5
E N V I R O N M E N T D I V I S I O N 1 0 - 7
I N P U T- O U T P U T S E C T I O N — F I L E - C O N T R O L 1 0 - 7
D A T A D I V I S I O N 1 0 - 9
P R O C E D U R E D I V I S I O N 1 0 - 9
C L O S E 1 0 - 1 0
D E L E T E 1 0 - 1 0

viu

O P E N 1 ° - 1 1
R E A D 1 ° - 1 3
R E W R I T E 1 ° - 1 7
S E E K — P r i m e E x t e n s i o n 1 0 - 1 9
S T A R T 1 ° - 2 0
W R I T E 1 0 " 2 3
E x a m p l e 1 0 - 2 4

1 1 R e l a t i v e F i l e s 1 1 " 1
R e l a t i v e F i l e C o n c e p t s H - 1
C o m m o n O p e r a t i o n s o n R e l a t i v e F i l e s 1 1 - 5
E N V I R O N M E N T D I V I S I O N 1 1 - 7
I N P U T- O U T P U T S E C T I O N — F I L E - C O N T R O L 11 - 8
D A T A D I V I S I O N 1 1 - 9
P R O C E D U R E D I V I S I O N 1 1 - 1 0
C L O S E 1 1 - 1 °
D E L E T E 1 1 - 1 1
O P E N 1 1 - 1 2
R E A D 1 1 - 1 4
R E W R I T E 1 1 - 1 7
S E E K — P r i m e E x t e n s i o n 1 1 - 1 8
S T A R T 1 1 - 1 9
W R I T E 1 1 - 2 0
E x a m p l e 1 1 - 2 2

1 2 T a p e F i l e s 1 2 - 1
T a p e S t r u c t u r e 1 2 - 1
B l o c k i n g S t r a t e g y 1 2 - 2
I n t e r n a l S t r u c t u r e o f F i x e d - l e n g t h R e c o r d s 1 2 - 2
In te rna l S t ruc tu re o f Var iab le - leng th Records 12-3
M u l t i v o l u m e T a p e F i l e s 1 2 - 4
M u l t i p l e F i l e T a p e s 1 2 - 5
O v e r v i e w o f t h e L A B E L C o m m a n d 1 2 - 6
F o r m a t o f M a g n e t i c T a p e L a b e l s 1 2 - 8
U n l a b e l e d M a g n e t i c T a p e s 1 2 - 1 2
Compiling, Linking, and Executing Programs That Use Tape 12-13
E N V I R O N M E N T D I V I S I O N 1 2 - 1 4
I N P U T- O U T P U T S E C T I O N — I - O - C O N T R O L 1 2 - 1 4
D A T A D I V I S I O N 1 2 - 1 5
B L O C K C O N T A I N S 1 2 - 1 5
C O D E - S E T 1 2 - 1 6
L A B E L R E C O R D S 1 2 - 1 7
V A L U E O F F I L E - I D 1 2 - 1 7
P R O C E D U R E D I V I S I O N 1 2 - 2 0

C L O S E 1 2 - 2 0
O P E N 1 2 - 2 1
R E A D 1 2 - 2 2
W R I T E 1 2 - 2 3
M a g n e t i c T a p e E r r o r R e p o r t i n g 1 2 - 2 4
E x a m p l e 1 2 - 2 9

1 3 I n t e r p r o g r a m C o m m u n i c a t i o n 1 3 - 1
L I N K A G E S E C T I O N 1 3 - 1
P R O C E D U R E D I V I S I O N 1 3 - 2
C A L L 1 3 - 3
C A N C E L 1 3 - 4
E N T E R 1 3 - 5 ^
E X I T P R O G R A M 1 3 - 5
G O B A C K — P r i m e E x t e n s i o n 1 3 - 5
Linking and Executing More Than One Program 13-6
L a n g u a g e I n t e r f a c e s 1 3 - 1 0

1 4 T h e S O R T a n d M E R G E V e r b s 1 4 - 1
S o r t a n d M e r g e O p e r a t i o n s 1 4 - 1
E N V I R O N M E N T D I V I S I O N — I - O - C O N T R O L 1 4 - 2
D A T A D I V I S I O N — F I L E S E C T I O N 1 4 - 4
P R O C E D U R E D I V I S I O N 1 4 - 4
M E R G E 1 4 - 5
R E L E A S E 1 4 - 1 1
R E T U R N 1 4 - 1 2
S O R T 1 4 - 1 4

1 5 S o u r c e T e x t M a n i p u l a t i o n 1 5 - 1
C O P Y 1 5 - 1

Appendices

A C O B O L 8 5 F o r m a t s A - 1
I D E N T I F I C A T I O N D I V I S I O N A - 1
E N V I R O N M E N T D I V I S I O N A - 2
D A T A D I V I S I O N A - 5
P R O C E D U R E D I V I S I O N A - 1 3

B R e f e r e n c e T a b l e s B - 1

C E r r o r M e s s a g e s C - 1
C o m p i l e T i m e E r r o r M e s s a g e s C - 1
C O B O L 8 5 R u n t i m e E r r o r M e s s a g e s C - 2
P R I M O S E r r o r M e s s a g e s C - 3

D PRISAM to COBOL85 Status Code Mapping

E The Debugger Interface
Overview
Examples

F Prime Support of the ANSI Standard
Standard COBOL Features in COBOL85
Prime Extensions to the ANSI Standard

G Obsolete Language Elements

H Conversion From CBL to COBOL85
New Reserved Words
New 1-0 Status Codes and Error Handling
Other CBL7C0B0L85 Differences Requiring Conversion
Compiler Options
ENVIRONMENT DIVISION
DATA DIVISION
PROCEDURE DIVISION
Record Size Conflict Tables

I Implementation-dependent Features of COBOL85
Maximum Sizes
Maximum Numbers
Other Information

J COBOL85 Library Files

K The MAP Option
Example

L The XREF Option
Example

M Loading and Executing With SEG
Loading Programs
Executing Loaded Programs — Runtime

N File Assignments With -FILE_ASSIGN
Interactive File Assignments
Example

O COBOL85 Sample Programs
Contents of Data File
Source Listing — CLASS.BUILD.COBOL85
Compile and Link Dialog — CLASS.BUILD.COBOL85

D-1

E-1
E-1
E-2

F-1
F-1
F-3

G-1

H-1
H-1
H-2
H-8
H-8
H-9

H-10
H-11
H-13

1-1
1-1
I-2
I-2

J-1

K-1
K-2

L-1
L-2

M-1
M-1
M-3

N-1
N-1
N-2

0-1
0-1
0-2
0-6

x i

Program Execution — CLASS.BUILD.COBOL85 0-6
Source L is t ing — CLASS. INQUIRYC0B0L85 0-8
Compile and Link Dialog — CLASS.INQUIRY.C0B0L85 0-14
Program Execution — CLASS.INQUIRYCOBOL85 0-14

P G l o s s a r y P - 1

I n d e x X - 1

" >

xu

About This Book

r

-

-

r

Purpose and Audience
This document is a programmer's guide to the C0B0L85 language as it is implemented on
50 Series™ systems, which run under the PRIMOS® operating system. The guide provides the
necessary information for compiling, linking, executing, and debugging COBOL85
programs. It is designed to be used as a reference guide for an experienced COBOL
programmer. If you are unfamiliar with the COBOL language, read one of the many
commercially available instruction books. Examples are

• Feingold, Carl. Fundamentals of Structured COBOL Programming. Dubuque: Wm. C.
Brown Company, 1978.

• Garfunkel, Jerome. The COBOL 85 Example Book. New York: John Wiley & Sons,
1987.

• Nelson, Donald. COBOL 85 for Programmers. New York: Elsevier Science Publishing
Company, Inc., 1988.

• McCracken, Daniel D. A Simplified Guide to Structured COBOL Programming. New
York: John Wiley, 1976.

• Philippakis, Andreas S. and Kazimier, Leonard J. Advanced COBOL. New York:
McGraw-Hill, 1982.

• Popkin, Gary S. Comprehensive Structured COBOL. Boston: Kent Publishing
Company, 1984.

Organization
This document has fifteen chapters:

• Chapter 1 introduces COBOL85, including supporting utilities, systems, and software,
and differences from the ANSI standard.

• Chapter 2 provides information on the use of the COBOL85 compiler.
• Chapter 3 describes the process of loading and executing COBOL85 programs.
• Chapter 4 discusses the basic elements of the COBOL85 language.
• Chapters 5 through 8 discuss the IDENTIFICATION DIVISION, ENVIRONMENT

DIVISION, DATA DIVISION, and PROCEDURE DIVISION, respectively.

First Edition xiii

COBOL85 Reference Guide

Chapters 9 through 12 focus on the processing of sequential files, indexed files, relative
files, and magnetic tape files, respectively.
Chapter 13 provides information on interprogram communication.
Chapter 14 covers the SORT and MERGE verbs in detail.
Chapter 15 discusses the source text manipulation statement: COPY.

The document also has sixteen appendices:

Appendix A contains formats for all IDENTIFICATION DIVISION, ENVIRONMENT
DIVISION, and DATA DIVISION entries, and PROCEDURE DIVISION verbs.
Appendix B contains COBOL85 reference tables.
Appendix C discusses compile time and runtime error messages.
Appendix D includes three tables listing PRISAM status codes and their corresponding
COBOL85 status codes.
Appendix E describes the COBOL85 interface to the Source Level Debugger.
Appendix F lists all of the Standard COBOL features available in COBOL85, and
Prime extensions to the ANSI standard.
Appendix G lists all language elements on the ANSI obsolete language element list.
Appendix H documents all of the differences between CBL and COBOL85 that may
require attention during program conversion.
Appendix I lists implementation-dependent features of COBOL85.
Appendix J lists subroutines contained in the COBOL85 library.
Appendix K contains a sample program listing that includes a map created with the
-MAP compiler option.
Appendix L contains a sample program followed by a cross-reference listing created
with the -XREF compiler option.
Appendix M discusses loading and executing COBOL85 programs with the SEG utility.
Appendix N provides information on interactive file assignments with the
-FILE_ASSIGN compiler option.
Appendix 0 contains COBOL85 sample programs that process variable-length records.
Appendix P is a glossary.

Suggested References

- ■

Refer to the following documents for more information about the COBOL 85 standard and
about Prime resources and utilities.

The ANSI Standard
The definitive reference for standard COBOL 85 is American National Standard
Programming Language COBOL, X3.23-1985. Every installation that uses C0B0L85
extensively should have a copy of this standard, which may be obtained from American
National Standards Institute, 1430 Broadway, New York, NY 10018.

xiv First Edition

About This Book

Prime Documents
Several books describe other Prime utilities that help you with your programming on Prime
equipment These documents are listed below.

• System Architecture Reference Guide, D0C9473-3LA
• Instruction Sets Guide, D0C9474-3LA
• Subroutines Reference I: Using Subroutines, DOC10080-2LA and its update

UPD10080-21A
• Subroutines Reference II: File System, DOC10081-1LA and its updates UPD10081-11A

andUPD10081-12A
• Subroutines Reference III: Operating System, DOC 10082-1LA and its updates

UPD10082-11A and UPD10082-12A
• Subroutines Reference IV: Libraries and I/O, DOC10083-1LA and its updates

UPD10083-11A and UPD10083-12A
• Subroutines Reference V: Event Synchronization, DOC10213-1LA
• PRIMOS User's Guide, DOC4130-5LA
• New User's Guide to EDITOR and RUNOFF, FDR3104-101B
• EMACS Primer, IDR6107-183P
• EMACS Reference Guide, DOC5026-2LA
• EMACS Extension Writing Guide, DOC5025-2LA
• Source Level Debugger User's Guide, DOC4033-193L and its updates UPD4033-21A,

UPD4033-22A, and UPD4033-23A
• SyncSort/PRIME Reference Manual, MAN10048-2LA
• Programmer's Guide to BIND and EPFs, DOC8691-1LA and its update UPD8691-11A
• SEG and LOAD Reference Guide, DOC3524-192L and its update UPD3524-21A
• MIDASPLUS User's Guide, DOC9244-2LA
• PRISAM User's Guide, DOC7999-4LA
• FORMS Programmer's Guide, PDR3040-163P
• Assembly Language Programmer's Guide, DOC3059-3LA
• Magnetic Tape User's Guide, DOC5027-2LA and its updates UPD5027-21A and

UPD5027-22A
• Advanced Programmer's Guide, (4 volumes)

o Volume 0: Introduction and Error Codes, DOC10066-3LA
o Volume I: BIND and EPFs, DOC 10055-1 LA and its update UPD 10055-11A
o Volume II: File System, DOC10056-2LA
o Volume III: Command Environment, DOC 10057-1 LA

• Pascal Reference Guide, DOC4303-4LA
CBL to COBOL85 Conversion Program Guide, DOC 10276-1 PA

First Edition xv

COBOL85 Reference Guide

Other Sources of Information
In addition to the documents listed above, consider the following sources when looking for
information about the COBOL85 compiler:

• The Software Release Document, also called an MRU, released at each software
revision contains a summary of new features and changes in 50 Series user software.

• Online HELP files, which contain information on PRIMOS commands, can be
displayed at your terminal. The command HELP DOCUMENTS provides an online list
of current Prime manuals and updates.

Acknowledgment

The authors and copyright holders of the copyrighted material used herein
FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC (R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry
Rand Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959
by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

xvi First Edition

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.
No warranty, expressed or implied, is made by any contributor or by the CODASYL COBOL
Committee as to the accuracy and functioning of the programming system and language.
Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection therewith.

*)

About This Book

Prime Documentation Conventions
The following conventions are used throughout this document. The examples illustrate the
uses of these conventions.

Convention

UPPERCASE

italic

Abbreviations
in format
statements

Brackets
[1

Explanation

In command or statement formats, words in uppercase
bold indicate the names of commands, options, state
ments, and keywords. Enter them in either uppercase or
lowercase. Underlined uppercase words are keywords.
Uppercase words that are not underlined are optional
words.

In command or statement formats, words in lowercase
bold italic indicate variables for which you must substi
tute a suitable value. In text and in messages, variables
are in non-bold lowercase italic.

If a command or option has an abbreviation, the abbre
viation is placed immediately below the full form.

Brackets enclose a list of one or more optional items.
Choose none, one, or several of these items.

Example

RECORD IS VARYING

COBOL85 program-name

Supply a value for
x between 1 and 10.

SET.QUOTA
SQ

LD -BRIEF~I
SIZE J

Braces Braces enclose a list of items. Choose one and only one ^ {filename^
o f t h e s e i t e m s . C L O S E < A L L j -

r
r

Braces within
brackets

[{}]

Parentheses
()

User input
in examples

Ellipsis

Hyphen

Default
indicator*

Braces within brackets enclose a list of items. Choose
either none or only one of these items; do not choose
more than one. If one of the items contains only upper
case words that are not underlined, that item is the
default item.

In command or statement formats, you must enter
parentheses exactly as shown.

In examples, user input is in bold italic but system
prompts and output are not.

An ellipsis indicates that you have the option of enter
ing several items of the same kind in the program.

Wherever a hyphen appears as the first character of an
option, it is a required part of that option.

In a list of options, an asterisk indicates the default
choice, if one exists. If you do not select an option, the
system chooses the default option.

" fCOMPRESSEP \"1

\UNCOMPRESSEDJ J

data-name (index)

OK, RESUME MY_PROG
This is the output
of MY_PROG.CPL
OK,

item-x [item-y]...

COBOL85 name -LISTING

-LISTING
* -NO LISTING

First Edition xvii

COBOL85 Reference Guide

Convention

Red text

Explanation Example

Text printed in red indicates a Prime extension to or COMPRESSED
restriction on the ANSI standard.

Filename Conventions
Filenames may be comprised of 1 to 32 characters inclusive, the first character of which must
be nonnumeric. Names must not begin with a hyphen (-) or underscore (_)• Filenames may be
composed only of the following characters: A-Z, 0-9, _ # $ - * . and /.

Note
On some devices, the underscore (_) may print as a back arrow (<-).

Convention

filename. language

filename BIN

filenameXAST

filename.RUN

Explanation

Source file

Binary (object) file

Listing file

Saved executable runfile

Example

MYPROG.COBOL85

MYPROG.BIN

MYPROG.LIST

MYPROG.RUN

See Chapter 2 for an explanation of how the various names for source, object, listing, and
runtime files relate to each other.

xviii First Edition

Overview of COBOL85

This chapter introduces COBOL85. It discusses the Prime implementation of ANSI Standard
COBOL and highlights several Prime extensions to the ANSI Standard. The chapter also
discusses the implementation of COBOL85 on Prime computers, and the characteristics of
various programming environments. Finally, the chapter presents the broad range of system
and file management resources that support COBOL85.

Language Standards

r

COBOL85 implements the intermediate level of American National Standards Institute
(ANSI) COBOL, as defined in the document American National Standard Programming
Language COBOL X3.23-1985, published by the American National Standards Institute,
New York, 1985. COBOL85 also implements a number of high-level features of Standard
COBOL. Appendix F provides a complete list of Standard COBOL features available in
COBOL85.

Prime Extensions to the ANSI Standard
Prime has added a number of extensions to the ANSI standard. Throughout this book, Prime
extensions are printed in red to identify them as such. Appendix F includes a complete list of
these extensions. Some of the more important Prime extensions are listed here:

• You can use either the apostrophe or the single quotation mark as a delimiter for
nonnumeric literals.

• You can specify data types COMPUTATIONAL-1 and COMPUTATIONAL-2 (single-
precision floating point and double-precision floating point).

• You can specify the COMPRESSED or UNCOMPRESSED attribute in a file
description.

• You can specify as many as eight levels of subscripting.
• You can specify subscripts mat arc subscripted themselves. You also can specify

subscripts that are arithmetic expressions.

First Edition 1-1

COBOL85 Reference Guide

• You can use arithmetic expressions in place of data-names in many circumstances.
• You can use the CORRESPONDING phrase with IF, MULTIPLY, DIVIDE, and

COMPUTE.
• You can use OTHERWISE with IF.
• You can use literals as operands of some clauses after INSPECT.
• You can use the EJECT, EXHIBIT, GOBACK, NOTE, READY TRACE, REMARKS,

and RESET TRACE statements in the PROCEDURE DIVISION.
• In a CALL statement you can pass arguments of a level-number other than 01 or 77

(except 66 or 88).
• You can specify the RECORDING MODE clause in a file description.

C O B O L 8 5 o n P r i m e C o m p u t e r s ^
Implementation
COBOL85 runs on the PRIMOS operating system. COBOL85 runfiles operate in Virtual
Addressing mode (V mode); therefore, COBOL85 runs on all Prime models that support V
mode. For more information on V mode, see the System Architecture Reference Guide.
Prime processors execute an extended set of instructions directly, including decimal
arithmetic and character edits. They maximize execution time efficiency better than
processors that substitute only an equivalent software routine. The Prime instruction sets are
presented in the System Architecture Reference Guide and the Instruction Sets Guide.

Operating Environment
One version of PRIMOS exists for all 50 Series computers. PRIMOS features paged and
segmented virtual memory management. The operating system is based on demand paging
from disk with 2048 bytes per page. A page-sharing feature reduces overhead time. The
system thus immediately and automatically satisfies paging requirements for the application
program.
COBOL85 runs on PRIMOS at Rev. 22.0 and higher.

Conversion From CBL to COBOL85
Because of changes in ANSI Standard COBOL, you may need to modify programs that you
compiled with the Prime CBL compiler, if you wish to recompile them with COBOL85. If you
do recompile CBL programs with COBOL85, load and execute them with PRIMOS Rev. 22.0
or higher.

Appendix H lists the differences between CBL and COBOL85 and discusses conversion
issues.

1-2 First Edition

r — _ _
Program Environments

Overview of COBOL85

r

~

r
r

Under PRIMOS, you can compile, load, and execute COBOL85 programs in one of three
environments:

• Interactive
• Phantom
• Batch

Interactive Environment
You can handle all phases of COBOL85 compilation through an interactive terminal. You
can create, edit, compile, list, debug, execute, and save a program in a single interactive
session.

You can initiate program execution directly. Programs run in real time, and the terminal is
dedicated to the program during execution. You can display program output, as well as error
messages, at the terminal. Common uses of the interactive environment include

• Use of interactive software, such as ED, EMACS, and DBG, to develop, test, and debug
programs

• Execution of programs that require short execution time
• Execution of data entry programs, such as order entry or payroll

Note
All examples of compiling, loading, and execution in this book are given for an interactive
environment

Phantom Environment
The phantom environment allows you to execute programs without a dedicated terminal.
Phantom users are programs that accept input from a command file instead of a terminal;
output directed to a terminal is either ignored by the system or directed to a file.
Common uses of phantoms include

• Execution of programs that require long execution time, such as sort programs
• Execution of certain system utilities, such as the line printer spooler
• Execution of any program that must leave the terminal free for another use

See the PRIMOS User's Guide for more detailed information on command files and phantom
users.

Batch Environment
Because the number of phantom users on a system is limited, phantoms are not always
available. The batch environment allows users to submit noninteractive command files as

First Edition 1-3

COBOL85 Reference Guide

batch jobs at any time. The batch monitor (itself a phantom) queues these jobs and runs them,
one to six at a time, as phantoms become available.

See the PRIMOS User's Guide for more detailed information on command files and batch
processing.

System Resources Supporting COBOL85
COBOL85 shares with all Prime programming languages a broad range of system and file
management resources. Such resources as system libraries, the text editor, the Source Level
Debugger, and the BIND utility expand the scope and efficiency of the Prime interactive
environment. Compatible file management systems provide standardized file management,
and allow you to create and maintain data files separately from the application program.
COBOL85 programs can call other programs compiled in any of several languages, including
CBL.

Libraries
COBOL85 programmers may find system library functions and subroutines of use in some
applications. Appendix J lists the modules in the COBOL85 library (COBOL85LIB).

Note
COBOL85 programs do not have access to any part of the CBL library. Likewise, CBL
programs do not have access to any part of the COBOL85 library. All CBL and COBOL85
entry points are unique.

The Subroutines References, I through V, include complete descriptions of all Prime library
and system subroutines.

Language Interfaces
Because all Prime high-level languages are alike at the object-code level, object modules
produced by the COBOL85 compiler can call and be called by modules produced by the
CBL, F77, Pascal, PMA, PLl, and PL1G compilers, provided that you observe the following
restrictions:

• Write all 1-0 routines in the same language.
• Ensure that data types for variables being passed as arguments do not conflict.

For more information on language interfaces, see Table 13-1 and the Subroutines Reference I.

Editors
ED is a line-oriented text editor that enables you to enter and modify source code and text
files. For information on how to use ED, see the PRIMOS User's Guide or the New User's
Guide to EDITOR and RUNOFF.

1-4 First Edition

Overv/ew o/ COBOL85

EMACS is a separately priced screen-oriented editor. For information on EMACS, see the
EMACS Primer, the EMACS Reference Guide, and the EMACS Extension Writing Guide.

Source Level Debugger
The Source Level Debugger (DBG) is a separately priced symbolic debugger that supports
breakpoints, single-stepping, tracing, change of program flow, and modification of data. The
C0B0L85 compiler option that interfaces to the Debugger is documented in Chapter 2 and
Appendix E. The Debugger is described in the PRIMOS User's Guide and the Source Level
Debugger User's Guide.

PRIMOS SORT and SyncSort/PRIME
The SORT verb invokes either PRIMOS SORT or the separately priced SyncSort®/PRIME,
whichever is installed on the system. A COBOL85 program can also invoke either PRIMOS
SORT or SyncSort/PRIME through a subroutine call. For information on PRIMOS SORT,
see the PRIMOS User's Guide. For information on SyncSort/PRIME, see the SyncSortl
PRIME Reference Manual.

BIND and SEG
BIND is the PRIMOS linking utility that creates Executable Program Formats (EPFs).
Chapter 3 discusses BIND, and describes the commands needed to link programs. The
Programmer's Guide to BIND and EPFs contains a complete dictionary of all BIND
subcommands as well as a dictionary of EPF-related PRIMOS commands and the subroutines
that apply to EPFs. The book also discusses programming restrictions and limitations on
EPFs, and provides instructions on how to build an EPF library.
SEG is a loading and executing utility that creates static-mode runfiles, combining separately
compiled program modules, subroutines, and libraries into an executable runfile. The SEG
utility has many functions. Appendix M discusses the minimum functions necessary for a
COBOL85 programmer. The SEG and LOAD Reference Guide presents advanced features.

Note
If your COBOL85 program is larger than one segment, you must use BIND to link and execute
it. If your program is less than one segment, you can use either BIND or SEG.

Multiple Index Data Access System (MIDASPLUS)
MIDASPLUS™ is a system of utilities and subroutines for creating and maintaining indexed
and relative files. MIDASPLUS provides the COBOL85 programmer with a transparent
multilevel file structure. MIDASPLUS subroutines called automatically from the COBOL85
library routines perform all housekeeping functions on the index and data subfiles.
MIDASPLUS files created by programs written in one language can be accessed and
manipulated by programs written in other languages.

First Edition 1-5

COBOL85 Reference Guide

MIDASPLUS offers several features of interest to the COBOL85 programmer:

• A MIDASPLUS file can have as many as 17 alternate record keys.
• MIDASPLUS can retrieve multiple records for a single key value through the use of

duplicate keys.
• A COBOL85 program can access a single MIDASPLUS file both sequentially and

randomly.

For more information, see the MIDASPLUS User's Guide.

The Prime Recoverable Indexed Sequential Access Method (PRISAM)
PRISAM™ is a data management software system designed to provide automatic recovery,
simple file structures, and strong performance in a transactional multiuser environment.
Major features of PRISAM include

• Management of sequential, indexed, and relative files
• Support for user defined and mixed transactions
• System halt recovery
• Media failure recovery
• Software error recovery

For more information, see the PRISAM User's Guide.

Forms Management System (FORMS)
FORMS allows you to create and maintain screen forms for use in interactive application
programs. These screen forms are useful for the applications programmer writing data entry
programs in which data fields must be displayed in one or more formats. FORMS keeps the
application programs, the forms, and the devices they use separated until runtime. Thus,
changes to one area do not necessarily affect the other two. For information on how to use
FORMS, see the FORMS Programmer's Guide.

1-6 First Edition

Compiling the Program

'

r

In order to execute a COBOL85 program, you must first compile and link it successfully.
This chapter explains how to compile COBOL85 programs. It discusses the COBOL85
command, compiler error messages and output files, COBOL85 file-naming conventions, and
all COBOL85 compiler options. Chapter 3 explains how to link and execute a successfully
compiled COBOL85 program.

The COBOL85 Command
The COBOL85 compiler is invoked by the COBOL85 command in the format

COBOL85 pathname [options]
COB

where the variables in this format have the following meanings:

Variable Meaning
pathname The pathname of the COBOL85 source file. Pathnames are explained in the

PRIMOS User's Guide.
options One or more options controlling compiler functions, such as generating listings and

invoking the Source Level Debugger. The options are explained in the section Com
piler Options, later in this chapter. A hyphen (-) must precede each option.

COB is a valid abbreviation for the COBOL85 command and for the COBOL85 source
filename suffix.
An example of the COBOL85 command is

OK, COBOL85 MYPROG -LISTING HOME>MYPROG.LIST

You can specify the source filename without the COBOL85 suffix. In this example, the
COBOL85 compiler first looks for a source file named MYPROG.COBOL85. If
MYPROG.COBOL85 does not exist, the compiler looks for a source file named
MYPROG.COB. If MYPROG.COB does not exist, the compiler looks for a source file
named MYPROG. If more than one of these files exist, COBOL85 compiles the first one it

First Edition 2-1

COBOL85 Reference Guide

finds. In this example, the compiler also opens a listing file having the pathname
HOME>MYPROG.LIST.

If compilation is successful, the screen displays a message in the following format:

[C0B0L85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: <MFD>MYDIR>MYPROG.C0B0L85]

OK,

If errors occur during compilation, error messages are output to the terminal. If you specify a
listing or error file, error messages are also output to these files. After compilation, control
returns to PRIMOS.

Compiler Error Messages
The general format of the error message is

ERROR err SEVERITY sev LINE line COLUMN col [text
diagnostic

where the variables in this format have the following meanings:

Variable Meaning
e r r The COBOL85 error number
sev The severity number:

1 Observation
2 Warning
3 Fatal (no object code produced)
4 Abortion of compilation

(no object code produced)
l i n e The line where the error occurs
c o l The column where the error begins

[text] Adcascription of the severity level and
SYNTAX Fatal, caused by violation of syntax rules or format
SEMANTICS Caused by violation of syntax rules or general rules

diagnostic The COBOL85 compiler error diagnostic

An example of a compilation that generates an error message is

OK, COBOL85 MYPROG -LISTING
[C0B0L85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]

ERROR 407 SEVERITY 2 LINE 15 COLUMN 19 [WARNING, SEMANTICS]
The initial value for "A9" exceeds the range of values allowed by
the PICTURE or by the default implementation size. The initial value
may be truncated or unpredictable.

2-2 First Edition

Compiling the Program

[1 WARNING IN PROGRAM: <MFD>MYDIR>MYPROG.COBOL85]
OK,

r

r

r

Compiler Output
By default, COBOL85

• Sends error messages to the terminal
• Aborts if the number of fatal errors exceeds 100
• Creates an object file having a default filename
• Suppresses the listing file
• Suppresses the error file

To alter these defaults, you can

• Use the -SILENT option to suppress error messages of the severity that you specify
• Use the -ALLERRORS option to continue compilation and error message generation

beyond the limit of 100 fatal errors
• Use the -NO_ERRTTY to suppress the display of error messages at the terminal
• Use the -ERRORFILE option to request that all error messages be written to an error file
• Use the -BINARY option to specify an object pathname
• Use the -NO_BINARY option to suppress the object file
• Use the -LISTING option to request a source listing, and to specify a listing pathname
• Use the -EXPLIST, -MAP, -MAPSORT, -MAPWIDE, -XREF, and -XREFSORT

options to create various expanded listings

For a discussion of all compiler options, see the section Compiler Options, later in this
chapter. For a discussion of default file-naming conventions, see the following section.

COBOL85 Default File-naming Conventions
Four types of files can be involved in compilation: the source file, a listing file, an error file,
and an object file. Of these, the listing, error, and object files are compiler-generated. If you
specify filenames in the compile command line for the listing, error, and object files, the
COBOL85 compiler opens these files under the filenames that you specify. If you do not
specify filenames for these files, two default methods of file-naming are possible.

Normal Default File-naming
If the source filename ends in .COBOL85 or .COB, the default binary filename is
filename.BIN. If you request a listing or error file, the default listing name is filename.LlST
and the default error filename \s filename.ERROR.

First Edition 2-3

COBOL85 Reference Guide

Thus, for MYPROG.COBOL85, if the compile command line is

OK, COBOL85 MYPROG -LISTING -ERRORFILE

the files produced are MYPROG.BIN, MYPROG.LIST, and MYPROG.ERROR.

Obsolete Default File-naming
The compiler uses an outmoded file-naming convention if the source filename does not end
in .COBOL85. In this case, the default filename for a listing file is LJ'ilename, and the
default filename for an object file is B_f'ilename. However, the default filename for an error
file is filename.ERROR.

Thus, for a source file named SAM, if the compile command line is

OK, COBOL85 SAM -LISTING -ERRORFILE

the listing and object files are opened in the current directory as L_SAM and B_SAM,
respectively. If errors are generated, they are recorded in SAM.ERROR.
Table 2-1 summarizes the two file-naming conventions.

TABLE 2-1
Default File-naming Conventions

Source Binary List Errors

filename.COBOLS5

filename.COB

filename

filename..BIN

filename .BIN

B_ filename

filename.U.ST

filename.UST

L_ filename

filename.ERROR

filename.ERROR

filename.ERROR

Setting Default Names From PRIMOS
If you want the listing or object files to have default names other than those outlined above,
you must invoke the PRIMOS commands LISTING or BINARY with arguments prior to
compilation. The PRIMOS Commands Reference Guide discusses these commands.

Default Directories
If you specify a pathname for the source file, such as

<MFD> directory 1 >SAM

where directoryl is not the current directory, the compiler output files are, nevertheless,
created in the current directory, unless you specify another directory. This convention is true
for both file-naming conventions discussed above.

2-4 First Edition

Compiling the Program

Compiler Options

r

This section discusses all COBOL85 compiler options in alphabetical order. Most of the
options come in pairs, which act as switches to enable or disable a particular action. Table 2-3,
at the end of this chapter, provides a summary of the compiler options and abbreviations.

You can specify compiler options in any order. However, if you specify conflicting or
redundant options, the compiler generates an error message.

Some compiler options require that you specify an argument in addition to the option. The
argument follows the option, and is not preceded by a hyphen. If applicable, the following
discussions include lists of valid arguments.

In the absence of user-specified options, the compiler assumes certain options by default.
These default options are indicated by asterisks (*) throughout this section. Your System
Administrator can change these default options.

* - ^ 4 V

-64V specifies the object code addressing mode. 64V is a segmented virtual addressing mode
for 32-bit machines. It is the default and only addressing mode available for COBOL85.

-ALLERRORS
- A L L

-ALLERRORS produces diagnostics for all errors detected in the source program. If you do
not specify -ALL, the compilation aborts when the compiler has issued 100 fatal diagnostics.

-ANSI.OBSOLETE / * -NO_ANSI_OBSOLETE
- A O / - N A O

-ANSI_OBSOLETE generates observations for all language elements that ANSI X3.23-1985
lists as obsolete language elements. The presence of an element on this list means that the
element will not appear in the next ANSI COBOL standard. However, this does not imply
that the element will be removed from the COBOL85 compiler.

-NO_ANSI_OBSOLETE suppresses generation of observations for obsolete language
elements.

* -BIG.TABLES / -NO_BIG_TABLES
- B T / - N B T

-BIG_TABLES enables compile time checks for segment spanning of multi-segment data
blocks.

-NO_BIG_TABLES disables compile time checks for segment spanning of multi-segment
data blocks, and thus reduces compile time. Use -NO_BIG_TABLES only when you are
certain that you have correctly defined any multi-segment data blocks.

First Edition 2-5

COBOL85 Reference Guide

* -BINARY [pathname] I -NO_BINARY
- B / - N B

-BINARY produces an object file having the name that you specify in pathname. By default,
-BINARY produces an object file having the name source-program.BIN.

-NO_BINARY suppresses creation of the object file. Use this option when you want only a
syntax check or source listing.

* -CALCINDEX / -NO_CALCINDEX
- C A L C / - N C A L C

-CALCINDEX performs address calculations for indexed references at the time the indexed
item is referenced, instead of when the index is changed by a SET, SEARCH, or PERFORM
statement.

-NO_CALCINDEX disables address calculations for indexed references at the time of
reference.

-COMP / * -NO_COMP
/ -NCOMP

-COMP extends the range of computational variables from that specified by the PICTURE
clause to the maximum value that can be contained by the hardware for that computational
data type. Table 2-2 shows the range of computational variables allowed if you specify the
-COMP option. Size errors do not occur if the precision of runtime values falls within this
range. However, size errors do occur if the precision of runtime values exceeds this range.
Specifying the -COMP option in a program that uses the COMP or BINARY data types
enhances runtime speed because it eliminates some size checks and allows use of the native
instruction set with the data type.

TABLE 2-2
Range of Computational Data Types

PICTURE Clause Storage Range

S9(l) through S9(4)

S9(5) through S9(9)

16 bits
(2 bytes)

32 bits
(4 bytes)

-32768 through 32767

-2147483648 through
2147483647

-NO_COMP suppresses use of the full hardware capacity (15 or 31 bits) for COMP fields.
See Chapter 4 for a full discussion of computational data types.

2-6 First Edition

Compiling the Program

-CORRMAP / * -NO_CORRMAP
-CORM / -NCORM

-CORRMAP inserts a map of CORRESPONDING matches into the source listing.
-NO_CORRMAP suppresses insertion of a map of CORRESPONDING matches into the
source listing.

-DATA_REP_OPT / * -NO_DATA_REP_OPT
- D R O / - N D R O

-DATA_REP_OPT performs optimization for decimal data type arithmetic operations when
possible. This optimization enhances runtime performance, but increases compile time. This
option includes -COMP implicitly.
Do not use this option if your program includes arithmetic operations on values that exceed
nine significant digits. Consider all trailing zeros, up to the limit that you specify for the
variables in the DATA DIVISION, as significant digits. If an arithmetic value exceeds nine
significant digits, and overflow occurs, results are undefined. Use the -SIGNALERRORS
compile option with -DATA_REP_OPT, so that the program aborts if overflow occurs.
-NO_DATA_REP_OPT suppresses optimization for decimal data type arithmetic operations.

-DEBUG / * -NO.DEBUG
-DBG / -NDBG

-DEBUG modifies the object code so that it runs under the Source Level Debugger (DBG).
The code is not optimized, and execution time increases. Appendix E gives more information
on the debugger interface.
-NO_DEBUG suppresses generation of debugger code.

-ERRORFILE / * -NO_ERRORFILE
-ERRF / -NERRF

If the compiler issues any diagnostics to the terminal, -ERRORFILE produces a file called
program-name.ERROR, containing all diagnostics issued.
-NO_ERRORFILE suppresses creation of a file containing diagnostics.

* -ERRTTY / -NO_ERRTTY
-ERRT / -NERRT

-ERRTTY displays error messages at the terminal.
-NO_ERRTTY suppresses this function.

First Edition 2-7

COBOL85 Reference Guide

-EXPLIST / * -NO_EXPLIST
-EXP / -NEXP

-EXPLIST creates a source listing that includes an assembly code listing. Each statement in
the source listing is followed by the Prime Macro Assembler (PMA) statements into which it
was compiled. To use the listing, a knowledge of PMA is necessary. For information on
PMA, see the Assembly Language Programmer's Guide.
-NOJEXPLIST suppresses printing of assembler statements in the listing.

-FILE_ASSIGN / * -NO_FILE_ASSIGN
- F A / - N F A

-FILE_ASSIGN enables manual runtime file assignment. For a detailed description of this
option see Appendix N.
-NO_FILE_ASSIGN disables manual runtime file assignment.

* -PORMATTED_DISPLAY / -NO_FORMATTED_DISPLAY
- F D I S / - N F D I S

-FORMATTED_DISPLAY formats output of numeric fields. It suppresses leading zeros,
moves the operational sign to the left of nonspace numeric fields, and inserts implied decimal
points. Use of this option does not affect the way numeric fields are stored in memory.
-NO_FORMATTED_DISPLAY specifies that numeric fields be displayed just as they are
stored in memory; that is, they are not formatted.

-FULLJHELP
-FH

-FULL_HELP is similar to the -HELP option, except that in addition to the usage summary,
the screen displays a description of each compiler option.

-HELP
-H

-HELP displays a list of compiler options and their functions.
Enter this option with no arguments, as follows:

OK, COBOL85 -HELP

2-8 First Edition

Compiling the Program

-HEXADDRESS / * -NO_HEXADDRESS
- H E X / - N H E X

In conjunction with -MAP or -EXPLIST, -HEXADDRESS prints addresses in the listing
file in hexadecimal instead of octal notation.

-NO_HEXADDRESS suppresses the printing of addresses in the listing file in hexadecimal
notation.

-LISTING [argument] I * -NOJLISTTNG
- L / - N L

-LISTING generates a source listing. The basic source listing contains the date and time of
compilation, the options in effect, the source text, and a list of errors. You may use the
arguments TTY, pathname, and SPOOL to specify the following actions:

Argument Action
TTY Displays the listing at the terminal.
pathname Writes the listing to a specific file.
SPOOL Spools the listing directly to the line printer.

-NO_LISTING suppresses the source listing.

-MAP / * -NO_MAP
-MA / -NMA

-MAP produces a listing that includes a map of data and procedure names. A sample data
map with discussion appears in Appendix K. This option includes -LISTING implicitly.
-NO_MAP disables the creation of a map listing file.

-MAPSORT / * -NO.MAP
- M A P S / - N M A

-MAPSORT produces a listing that includes a map of data and procedure names sorted
alphabetically. This option includes -LISTING implicitly.
-NO_MAP disables the creation of a map listing file.

-MAPWIDE / * -NO_MAP
- M A P W / - N M A

-MAPWIDE produces a listing that includes a map of data and procedure names. The map
information is printed in 108-character lines instead of 80-character lines. This option
includes -LISTING implicitly.

-NO_MAP disables the creation of a map listing file.

First Edition 2-9

COBOL85 Reference Guide

-OFFSET / * -NO_OFFSET
-OFF / -NOFF

-OFFSET produces a listing that includes the object address (octal offset from the Procedure
Base register) of each PROCEDURE DIVISION statement. The format of each address is

line number: halfword offset

This option includes -LISTING implicitly.

-NO_OFFSET disables printing of object addresses in the listing file.

* -OPTIMIZE [decimal-integer]
-OPT

-OPTIMIZE controls the optimization phase of the compiler.

Optimized code runs more efficiently than nonoptimized code, but takes longer to compile.
The use of this option performs such automatic tasks as keeping track of register contents
and evaluating constant expressions.

You can set optimization at one of the following levels by specifying decimal-integer
following -OPTIMIZE:

Level Meaning
0 Turns optimization off
1 Same as level 0
2 Full optimization (default)
3 Reserved for future designation
4 Reserved for future designation

-PRODUCTION / * -NO_PRODUCTION
- P R O D / - N P R O D

-PRODUCTION is similar to -DEBUG, except that the code generated does not permit
insertion of statement breakpoints. Execution time is not affected.

-NO_PRODUCTION disables this partial debugger functionality.

-RANGE / * -NOJRANGE
- R A / - N R A

-RANGE checks for out-of-bounds values in array subscripts and in OCCURS
DEPENDING ON data-names. The compiler inserts error-checking code into the object file.
During execution, if an item takes on a value outside the range that you specify in the DATA
DIVISION entry, a runtime error diagnostic is issued, and the program terminates. The
diagnostic contains the source line number, the runtime subscript or the value in the

- >

2-10 First Edition

Compiling the Program

OCCURS DEPENDING ON data-name, and the legal boundaries for the array reference that
caused the error.

Because -RANGE increases both the compile time and execution time of your program, use
it only as a debugging tool.

-NO_RANGE disables runtime array range checking.

-RANGE_NONFATAL / * -NO_RANGE
- R N F / - N R A

-RANGE_NONFATAL functions the same as the -RANGE option, except that program
execution continues. However, continuing the program may lead to unpredictable results
depending on the subsequent use of the invalid array reference.
-NO_RANGE disables runtime array range checking.

-RMARGIN
-RMARG

-RMARGIN extends Area B of each source line to column 160.

-SIGNALERRORS / * -NO_SIGNALERRORS
- S I G / - N S I G

-SIGNALERRORS aborts execution and signals the PRIMOS ARITH$ condition if division by
zero, arithmetic overflow, or a conversion error occurs. Exponentiation errors always abort
execution. This option overrides any ON SIZE ERROR actions that you specify in the program.

-NO_SIGNALERRORS does not signal a condition for such errors. Results are undefined if
you do not specify ON SIZE ERROR in the program.

* -SILENT [decimal-integer]
-SI

-SILENT suppresses the display of error and warning messages of the severity you specify
in decimal-integer. The error and warning messages are also omitted from any listing files
generated, decimal-integer specifies one of the following levels:

Level Meaning
0 Displays all messages
1 Suppresses observations; displays warnings and fatals
2 Suppresses observations and warnings; displays fatals
3 Suppresses all messages

First Edition 2-11

COBOL85 Reference Guide

-SILENT with no argument defaults to -SILENT 1. An appearance of

-SILENT -0

at the top of the listing file means that you did not specify -SILENT, and that all error
messages are displayed by default. (Levels of messages are explained in the section Compiler
Output, earlier in this chapter.)

-SLACKBYTES / * -NO.SLACKBYTES
-SLACK / -NSLACK

-SLACKBYTES issues a severity level 1 diagnostic for each elementary or group item that
the compiler aligns on a 16-bit boundary. For example, COMP, BINARY, COMP-1, and
COMP-2 data items must be allocated on 16-bit boundaries. When any of these items are
members of a group, they are allocated on the current available location //"that location is on
a 16-bit boundary. Otherwise, they are shifted one byte to the right. The group item that
contains the items is also shifted, if required. See the section Data Representation and
Alignment in Chapter 4.
-NO_SLACKBYTES suppresses these diagnostics.

-SPACE / * -TIME

-SPACE specifies that object code size reduction be given preference over runtime speed
during the optimization phase of the compiler.
-TIME specifies that runtime speed be given preference over object code size reduction
during the optimization phase of the compiler.

-STANDARD / * -NO_STANDARD
-STAN / -NSTAN

-STANDARD generates observations for all Prime extensions.
-NO_STANDARD suppresses observations for Prime extensions.

-STATISTICS / * -NO.STATISTICS
-STAT / -NSTAT

-STATISTICS controls printout of compiler statistics.
The terminal displays a list of compilation statistics, such as program size and resources used
during compilation, after each phase of compilation. Headings identify each phase:

2-12 First Edition

Compiling the Program

H e a d i n g P h a s e
LEX Lexical analysis and parsing of IDENTIFICATION DIVISION
ED_PARSE Parsing of ENVIRONMENT DIVISION
DDJPARSE Parsing of DATA DIVISION
PD_PARSE Parsing of PROCEDURE DIVISION
ALLOCATOR Data allocation
GENERATOR Optimization and object code generation
TOTAL Total disk time for all phases

For each phase the list of statistics contains

StatisticHeading
DISK

SECONDS
SPACE
NODES
PAGING
CPU

Number of reads and writes during the phase, excluding those needed to
obtain the source file
Elapsed real time
Internal buffer space used for symbol table, in units of 2K bytes
The number of symbol table nodes that the compiler uses in the program
Disk 1-0 time
CPU time in seconds, followed by the clock time when the phase was com
pleted

Storage allocation statistics are appended to the listing. All sizes are stated in 16-bit
halfwords. The statistics are as follows:

H e a d i n g S t a t i s t i c
Code Size The number of halfwords of object code generated from the PROCEDURE

DIVISION of the source program. Appendix I lists the maximum allowable
code size.

Static Size The size of user-defined WORKING-STORAGE.
Source Lines The number of lines in the source program.
Lines per Min Lines compiled per minute.

-NO_STATISTICS suppresses display of compilation statistics.

r

* -STORE_OWNER_FIELD / -NO_STORE_OWNER_FIELD
- S O F / - N S O F

-STORE_OWNER_FIELD stores the identity of the current program in a known place for
use by traceback routines, such as DMSTK.

-NO_STORE_OWNER_FIELD does not save this information, but does save a small code
sequence for extremely time-critical programs.

First Edition 2-13

COBOL85 Reference Guide

* -SYNTAXMSG / -NO_SYNTAXMSG
- S Y N / - N S Y N

-SYNTAXMSG displays the messages SYNTAX CHECKING SUSPENDED and SYNTAX
CHECKING RESUMED, which accompany error messages.

-NO_SYNTAXMSG suppresses display of these messages.

* -VARYING / -NO_VARYING
-VARY / -NVARY

-VARYING specifies that files containing variable-length record descriptions be processed
as variable-length record files. This option also specifies that variable occurrence data items
be processed as variable-length tables.

-NO_VARYING specifies that all files be processed as fixed-length record files during 1-0
operations. This option also specifies that variable occurrence data items be processed as
fixed-length tables set at the maximum size.

Note
Specification of the RECORD IS VARYING clause or the RECORDING MODE IS V clause in
a file description entry overrides the -NO_VARYING compiler option.

-XREF / * -NO_XREF
-XR / -NXR

-XREF creates a listing that includes a map and cross-reference. For every variable, the
cross-reference lists the line number on which the variable is referenced. If the line number is
preceded by an asterisk, the reference changes the variable's value. A sample cross-reference
listing with discussion appears in Appendix L. This option includes -LISTING implicitly.
-NO_XREF suppresses the cross-reference listing.

-XREFSORT
-XRS

-XREFSORT creates a listing like the one generated by -XREF, but with data-names in
alphanumeric order.

-NO_XREF suppresses the cross-reference listing.

* >

2-14 First Edition

Compiling the Program

TABLE 2-3
Summary of Compiler Options and Abbreviations

Option

*-64X

-ALLERRORS

Abbreviation Significance

-ALL

Produces 64V-mode code

Overrides the limit of 100 fatal diagnostics

-ANSI OBSOLETE
♦-NO_ANSI_OBSOLETE

-AO
-NAO

Generates diagnostics for obsolete language
elements

♦-BIG TABLES
-NO_BIG_TABLES

-BT
-NBT

Checks for segment spanning of
multisegment data blocks

♦-BINARY
-NO_BINARY

-B
-NB

Creates object file

♦-CALCINDEX
-NO.CALCINDEX

-CALC
-NCALC

Calculates index offsets when referenced
instead of set

-COMP
♦-NO.COMP -NCOMP

Extends the range of computational vari
ables

-CORRMAP
♦-NO_CORRMAP

-CORM
-NCORM

Inserts a map of CORRESPONDING
matches into source listing

-DATA REP OPT
♦-NO_DATA_REP_OPT

-DRO
-NDRO

Performs optimization for decimal data type
arithmetic operations

-DEBUG
♦-NO_DEBUG

-DBG
-NDBG

Generates debugger code

-ERRORFILE
♦-NO.ERRORFILE

-ERRF
-NERRF

Produces error file if any diagnostics are
used

♦-ERRTTY
-NO_ERRTTY

-ERRT
-NERRT

Displays diagnostics

-EXPLIST
♦-NO_EXPLIST

-EXP
-NEXP

Produces expanded source listing

-FILE ASSIGN
♦-NO_FILE_ASSIGN

-FA
-NFA

Enables manual runtime file assignment

♦-FORMATTED DISPLAY
-NO_FORMATTED_DISPLAY

-FDIS
-NFDIS

Formats numeric items on DISPLAY

-FULLJHELP -FH Displays detailed list and usage of options

-HELP - H Displays list of options
* Default

First Edition 2-15

COBOL85 Reference Guide

TABLE 2-3
Summary of Compiler Options and Abbreviations - Continued

Option Abbreviation Significance

-HEXADDRESS -HEX
♦-NO_HEXADDRESS -NHEX

-LISTING -L
♦-NO_LISTING -NL

-MAP -MA
♦-NO_MAP -NMA

-MAPSORT -MAPS

-MAPWIDE -MAPW

-OFFSET -OFF
♦-NO OFFSET -NOFF

♦-OPTIMIZE [dec]

-PRODUCTION
♦-NO_PRODUCTION

-RANGE
♦-NO.RANGE

-RANGE NONFATAL

-RMARGIN

-SIGNALERRORS
♦-NO_SIGNAL_ERRORS

-SILENT [dec]

-SLACKBYTES
♦-NO.SLACKBYTES

-SPACE

-STANDARD
♦-NO STANDARD

-OPT

-PROD
-NPROD

-RA
-NRA

-RNF

-RMARG

-SIG
-NSIG

-SI

-SLACK
-NSLACK

-STAN
-NSTAN

Prints addresses in hexadecimal notation

Creates source listing

Produces a data map at the end of the
listing

Prints map with names sorted alphabetically

Prints map and cross-reference on 108-
character lines

Lists object address of procedure statements

Specifies the level of optimization to
perform

Generates production code

Checks subscript ranges

Generates non-fatal runtime code that
checks subscript ranges

Extends Area B to column 160

Aborts execution and signals overflow
errors

Suppresses reporting of a specified level of
errors

Flags each item that is compiler-aligned

Reduces size of object code

Generates observations for Prime extensions

~)

* Default

2-16 First Edition

Compiling the Program

TABLE 2-3
Summary of Compiler Options and Abbreviations - Continued

Option Abbreviation Significance

-STATISTICS
♦-NO_STATISTICS

-STAT
-NSTAT

Displays compilation statistics

♦-STORE OWNER_FIELD
-NO_STORE_OWNER_FIELD

-SOF
-NSOF

Generates module names into program code
for debugging use

♦-SYNTAXMSG
-NO.SYNTAXMSG

-SYN
-NSYN

Displays syntax-recovery messages

♦-TIME Generates fast object code

♦-VARYING
-NO_VARYING

-VARY
-NVARY

Enables variable-length record/table
processing

-XREF
♦-NO_XREF

-XR
-NXR

Generates cross-reference

-XREFSORT -XRS Generates alphanumeric-order cross-
reference

♦Default.

r First Edition 2-17

Linking and Executing Programs

r

-

r

After you compile your program, as discussed in Chapter 2, you are ready to link and execute
it. This chapter explains how to use BIND, the PRIMOS utility for linking virtual addressing
mode (64V or 321) programs. It discusses the BIND subcommands required to create an
Executable Program Format (EPF) runfile, as well as other useful BIND subcommands.
Finally, the chapter explains how to use the RESUME command to execute the EPF runfile
you have created.

Note
If your COBOL85 program is larger than one segment, you must use BIND to link and execute
it. If your program is smaller than one segment, you may use either BIND or SEG. For
information on linking, loading, and executing programs with the PRIMOS SEG utility, see
Appendix M.

Using BIND to Create an EPF
You can create an EPF using BIND in one of two ways:

• Interactively, by issuing BIND subcommands
• Directly, from the PRIMOS command line

Using BIND Interactively
To invoke BIND interactively, type the following command:

BIND

Then invoke BIND subcommands in response to the colon (:) prompt. The three BIND
subcommands needed to create an EPF are LOAD, LIBRARY, and FILE. Enter these
subcommands in the following sequence:

1. Use the LOAD subcommand to link your program, starting with the main procedure
followed by subroutines. The LOAD subcommand has the following format:

First Edition 3-1

COBOL85 Reference Guide

• Processes the entries
• Displays a BIND COMPLETE message at your terminal
• Files the EPF in your directory with a .RUN suffix
• Returns control to PRIMOS

A sample interactive linking session follows:

OK, BIND MYPROG /*Invoke BIND and link object file
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]

L O A D A D D / * L i n k A D D s u b r o u t i n e
L O A D S U B / * L i n k S U B s u b r o u t i n e
L I COBOL85L IB / *L ink COBOL85 l i b ra ry
L I / * L i n k S y s t e m l i b r a r i e s

BIND COMPLETE
: F I L E / * S a v e t h e E P F a n d r e t u r n

control to PRIMOS
OK,

In the preceding example, the resulting runfile is MYPROG.RUN.

3-2 First Edition

LOAD pathname-1 [pathname-2, pathname-3,...]
LO

Each pathname is the name of an object file (binary file).
2. Use the LIBRARY subcommand to link system libraries. The LIBRARY subcommand

has the following format:

LIBRARY [library-name-1] [library-name-2, library-name-3,...]
L I

You must link the COBOL85 library, COBOL85LIB (abbreviated COBLIB), and the
standard system library. Depending upon your application, link your own user-supplied
libraries, and any application libraries that your program uses.

3. If you do not receive a BIND COMPLETE message, use the MAP subcommand to
identify unresolved references (subroutines that are called but that you have not yet
linked). The MAP subcommand is explained in the following section.

4. If you do receive a BIND COMPLETE message, use the FILE subcommand to save the
EPF runfile and return to PRIMOS. The FILE subcommand has the following format:

FILE [EPF-filename]

In response to the FILE subcommand, BIND processes the EPF, files it in your directory with a
.RUN suffix, and returns control to PRIMOS. If you don't specify an EPF-filename, BIND adds
the .RUN suffix to the first object file that you link, and saves the runfile in your directory.

When you use BIND interactively and specify the FILE subcommand before you receive a
BIND COMPLETE message, BIND does the following:

• Resolves any unresolved references that remain, by creating dynamic links for those
references

Linking and Executing Programs

Using BIND From the Command Line
To invoke BIND from the PRIMOS command line type the following command:

BIND [EPF-filename] [-options]

EPF-filename is the name of the existing EPF or the name of the object file (binary file) that
you want BIND to create. If you do not specify the EPF-filename, BIND uses the name of
the first linked binary file for the EPF-filename base.

options given on the command line correspond to the BIND subcommands explained in the
preceding section. You must precede each option with a hyphen.
A sample single-step linking session, which is equivalent to the previous interactive session,
follows:

OK, BIND MYPROG -LOAD ADD SUB -LI COBOL85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE
OK,

When you invoke BIND from the command line, the FILE subcommand is appended by
default to the end of the command line.

Other Useful BIND Subcommands
You can use the subcommands MAP, HELP, RELOAD, and QUIT during a BIND session,
but you do not need them to create an EPF. You can use them at any time during the linking
sequence. See the Programmer's Guide to BIND and EPFs for information on additional
BIND subcommands.

Using the MAP Subcommand
Use the MAP subcommand to identify unresolved references if you do not receive a BIND
COMPLETE message at your terminal. The MAP subcommand has the following format:

MAP [pathname] [option]

If you specify a pathname, the map is written to a file instead of displayed at your terminal.
For example,

-.MAP MYMAP

writes a standard map of your program to the file MYMAP.
Use the -UNDEFINED option to obtain a list of any unresolved subroutine, program, or
common block references.

First Edition 3-3

COBOL85 Reference Guide

For example,

-.MAP -UNDEFINED

displays a list of the unresolved references.

Using the HELP Subcommand
You can enter the HELP subcommand only when you work with BIND interactively, not
when you are at the command line. To invoke the HELP facility for BIND, enter the HELP
subcommand at the colon (:) prompt. The format for HELP is as follows:

nr, „ f subcommand-name "1HELP 1 -LIST J

Specifying a subcommand-name gives you a brief online description of the syntax,
semantics, and abbreviation of that subcommand. The -LIST option displays a list of all
BIND's subcommands available in the HELP facility.

Using the QUIT Subcommand
You can use the QUIT subcommand to return to PRIMOS without completing the binding
process. If you are using BIND on the command line, the QUIT subcommand causes BIND
not to create an EPF. The QUIT subcommand has the following format:

QUIT
Q

Because the QUIT subcommand ends a BIND session without saving the EPF being created,
BIND asks you for verification before returning to PRIMOS. For example,

OK, BIND
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
-.LOAD SAMPLE
: L I
BIND COMPLETE
-.QUIT
EPF not filed, ok to quit? ('Yes', ' Y', 'No', 'W):Yes
OK,

Using the RELOAD Subcommand
Use the RELOAD subcommand to relink a binary file into an already existing EPF. The
RELOAD subcommand has the following format:

RELOAD pathname-1 [pathname-2, pathname-3,...]
RL

Each pathname is the name of an object file (binary file).

3-4 First Edition

Linking and Executing Programs

For example, suppose that you have created an EPF named BIG.PROGRAM.RUN, which
contains a main program and six subroutines. Suppose also that when you run this program,
you discover an error in one of the subroutines, SUB5. You correct the error and recompile
SUB5. You now want to BIND the program again and rerun it to see that it is now working
correctly.
To do this most quickly, first use the LOAD subcommand to link the existing EPF, then use
the RELOAD subcommand to relink your new version of SUB5. The BIND sequence looks
like this:

OK, BIND
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
-.LOAD BIG.PROGRAM.RUN
■.RELOAD SUB5
BIND COMPLETE
-.FILE
OK,

If you do not get the BIND COMPLETE message after relinking your subroutine, reissue the
LIBRARY commands that you used in your original BIND sequence. This situation happens
if you add new library calls when you rewrite the subroutine.

Running Your Program
After you compile your program and create an EPF with BIND, you are ready to run your
program by using the RESUME command. The RESUME command has the following
format:

RESUME [EPF-filename]

For example, suppose you have used BIND to create a runfile with the name
MYPROG.RUN. To execute MYPROG, for example, use the following PRIMOS command:

OK, RESUME MYPROG

PRIMOS looks in your directory for a file called MYPROG.RUN. If it finds such a file,
PRIMOS begins executing it as an EPF runfile. If it does not find MYPROG.RUN, PRIMOS
then searches for the following files, in order, and executes the first that it finds.

1. MYPROG.SAVE (static-mode runfile generated by LOAD or SEG)
2. MYPROG.CPL (CPL program)
3. MYPROG (static-mode runfile generated by LOAD or SEG)

If PRIMOS finds none of these files, it displays this error message:

Not found. MYPROG (std$cp)
ER!

For more information on running programs see the PRIMOS User's Guide.
First Edition 3-5

COBOL85 Reference Guide

Switch Settings at Runtime
If your COBOL85 program contains any of the switch-names CBLSWO through CBLSW7
(defined in Chapter 6), when you execute the program, the system displays a request for
switch settings:

SPECIFY ON SWITCHES:

Enter the numbers of all COBOL85 switches, from 0 through 7, that must be on during this
execution. The numbers must be separated by either spaces or commas. If an entry is wrong,
the system displays an error message and repeats the request.
As an example, for the sample program given in the section SPECIAL-NAMES in Chapter 6,
if tape processing or no printout is desired, use the following dialog at runtime:

SPECIFY ON SWITCHES:

0 1

File Assignments at Runtime
If you compiled your program with the -FILE_ASSIGN compiler option, when you execute
the program, the system displays a request for file assignments:

ENTER FILE ASSIGNMENTS:
>

Make one entry for each FD whose file ID you wish to assign. Syntax errors are generated
during file assignment for improper formats. When no file assignments remain to be entered,
use a slash mark (/) to conclude the session.
For example, suppose that a COBOL85 program contains the following statements:

FD DISK-FILE
VALUE OF FILE-ID IS 'FILEl'.

FD TAPE-FILE
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'FILE2'.

An appropriate runtime dialog is

ENTER FILE ASSIGNMENTS:
>FILE1 = MYDIRECTORY>DATA>DISBURSE
>FILE2 - $MT0, S, MYNAME, Tl
> /

For additional information on the -FILE_ASSIGN option, see Chapter 2 and Appendix N.

" >

3-6 First Edition

Elements of COBOL85

r

r
r

This chapter discusses the basic elements of the COBOL85 language. The chapter begins
with a summary of the divisions of a COBOL85 program, and the rules for coding a
COBOL85 program. It then discusses the COBOL85 character set, and its use in the
formation of COBOL85 words. The chapter explains the various levels, classes, and
categories of data, and the manner in which data is stored internally. The chapter lists the
rules for the qualification of data names, the formation of arithmetic and conditional
expressions, the specification of variable-length records, and the processing of tables of
repeating data items. The chapter concludes with a discussion of exception handling and file
status codes.

Divisions of a COBOL85 Program: A Summary
A COBOL85 program consists of four divisions:

• IDENTIFICATION DIVISION
• ENVIRONMENT DIVISION
• DATA DIVISION
• PROCEDURE DIVISION

IDENTIFICATION DIVISION
The IDENTIFICATION DIVISION (ID DIVISION) assigns a name to the program and
allows you to enter other information, such as your name, the date the program was written,
and remarks.

ENVIRONMENT DIVISION
The ENVIRONMENT DIVISION specifies those aspects of a program that depend upon the
physical characteristics of a specific computer, its peripheral devices, and file system. Two
sections make up the ENVIRONMENT DIVISION: the CONFIGURATION SECTION and
the INPUT-OUTPUT SECTION. The ENVIRONMENT DIVISION is optional.

First Edition 4-1

COBOL85 Reference Guide

The CONFIGURATION SECTION describes the computer on which the source program is
compiled and the computer on which the compiled program is to be run. It also relates
implementor-names used by the compiler to names introduced by the programmer in the
source program.
The INPUT-OUTPUT SECTION describes each file, and associates the file with a
peripheral device or a storage medium.

DATA DIVISION
The DATA DIVISION provides the compiler with a description of every data item used
within the program. The DATA DIVISION has three sections: the FILE SECTION, the
WORKING-STORAGE SECTION, and the LINKAGE SECTION. The DATA DIVISION is
optional.
The FILE SECTION describes the structure of data files. Each file is defined by a file-
description-entry and one or more record-description-entries.
The WORKING-STORAGE SECTION describes records and noncontiguous data items
that are not part of external files, but are developed and processed internally.
The LINKAGE SECTION is meaningful only in a called program. This section describes
data items that may be used by both the called and calling programs.

PROCEDURE DIVISION
The PROCEDURE DIVISION contains instructions (COBOL85 statements) to solve a data-
processing problem. The PROCEDURE DIVISION is optional. This division contains two
types of sections: declarative sections and procedural sections. The size of the PROCEDURE
DIVISION can exceed one segment.
Declarative sections contain instructions that are not performed in the regular sequence of
coding. Such procedures are executed only when an error condition is detected during a file
operation.
Procedural sections contain zero or more paragraphs each. Each paragraph consists of a
paragraph-name followed by zero or more COBOL85 sentences. Sentences, in turn,
comprise one or more COBOL85 statements. Sections and paragraphs are optional.
Execution of the instructions in the PROCEDURE DIVISION begins with the first statement
in the division, excluding declaratives. COBOL85 executes statements in the order in which
they are written in the source program, until a PERFORM, GO TO, or other transfer of
control is encountered.

" >

4-2 First Edition

Elements of COBOL85

Program Format and Example
The following diagram defines COBOL85 program format (conventions of notation are
explained in the following section, Format Notation):

' ■ }
f IDENTIFICATION DIVISION

t ID DIVISION.
PROGRAM-ID. program-name.
[AUTHOR, [comment-entry] • • •]
[INSTALLATION, [comment-entry] • • •]
1 DATE-WRITTEN, [comment-entry] • • •]
[DATE-COMPILED, [comment-entry] • • •]
[SECURITY, [comment-entry] • • • 1
[REMARKS, [comment-entry] • • • 1

ENVIRONMENT DIVISION.
"CONFIGURATION SECTION.
[SOURCE-COMPUTER, source-computer-entry.]
[OBJECT-COMPUTER. object-computer-entry.]
[SPECIAL-NAMES, [special-names-entry.] • • •].
INPUT-OUTPUT SECTION.
[FILE-CONTROL, [file-control-entry]]
[I-O-CONTROL. [I-O-control-entry]]

DATA DIVISION.
'FILE SECTION.
rfi le -descr ip t ion-ent ry. 1
_{record-description-entry) • • -J

[sort-merge-file-description-entry.~\{record-description-entry} • • • J

"WORKING-STORAGE SECTION.
r~level-77-description-entry~\
_record-description-entry J

"LINKAGE SECTION.
T~ level-77-dcscription-entry~\
_record-dcscription-entry J

PROCEDURE DIVISION [USING data-name-1 [,data-name-2] • •
"DECLARATIVES.

f [section-name SECTlON.[scgment-number]. USE-sentence.~\
\ [p a r a g r a p h - n a m e . [s e n t e n c e] . . .] . • •] • • • J
END DECLARATIVES.

{[section-name SECTION [segment-number].}
J [paragraph-name, [sentence]
\[sentence] • • • ••"-}

First Edition 4-3

COBOL85 Reference Guide

The following listing file for program SAMPLE illustrates COBOL85 program format.
SAMPLE reads a file and prints its contents.

SOURCE FILE: <MYMFD>MYDIR>C0B0L85>SAMPLE.C0B0L85
COMPILED ON: WED, AUG 03 1988 AT: 11:59 BY: C0B0L85 REV. 1.0-22.0
Opt ions selected: sample - l is t ing
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default):

64V No_Ansi_Obsolete BigJTables Binary CALCindex No_COMP No_C0RrMap
No_DeBuG No_Data_Rep_Opt No_ERRorFile ERRTty No_EXPlist No_File_Assign
Formatted_DISplay No_HEXaddress Listing* No_MAp No_OFFset OPTimize(2)
No_PRODuction No_RAnge No_SIGnalerrors Silent(0) No_SLACKbytes TIME
NO_STANdard No_STATistics Store_Owner_Field SYNtaxmsg No_TRUNCdiags
VARYing No_XRef

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
3 4
35
36
37
38
39
40
41

ID DIVISION.
PROGRAM-ID. SAMPC4.
INSTALLATION. PRIME 50 SERIES.
DATE-WRITTEN. AUGUST 25, 1987.
DATE-COMPILED. 880803.11:59:48.
SECURITY. NONE
REMARKS. THIS PROGRAM READS A FILE AND PRINTS ITS

CONTENTS SEQUENTIALLY.
* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-9950.
OBJECT-COMPUTER. PRIME-9950.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER.
SELECT INPUT-FILE ASSIGN TO PRIMOS.

* *
DATA DIVISION.
FILE SECTION.
FD PRINT-FILE, LABEL RECORDS ARE OMITTED,

DATA RECORD IS PRINT-LINE,
VALUE OF FILE-ID IS FILE-NAME-PT.

01 PRINT-LINE.
0 5 O U T - L I N E P I C X (7 2) .

FD INPUT-FILE,
VALUE OF FILE-ID IS 'IN-DATA',
DATA RECORD IS INPUT-IMAGE.

0 1 I N P U T - I M A G E P I C X (7 2) .
*
WORKING-STORAGE SECTION.
01 HEADER.

0 5 H I P I C X (7 1)
VALUE 'NAME

CITY
7 7 FILE-NAME-PT
77 NO-MORE-INPUTS

" >

STREET

PIC X{8) VALUE 'SAMP.RPT'.
PIC X VALUE 'N'.

* *
PROCEDURE DIVISION.

*
DECLARATIVES.

4-4 First Edition

Elements of COBOL85

42 INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON
4 3 I N P U T - F I L E .
44 ONLY-PARAGRAPH. DISPLAY 'ERROR ON READ'.
4 5 C L O S E I N P U T - F I L E , P R I N T - F I L E .
4 6 S T O P R U N .
4 7 E N D D E C L A R AT I V E S .
4 8 *
4 9 B E G I N N I N G S E C T I O N .
5 0 1 0 0 - C R E A T E - F I L E .
5 1 O P E N I N P U T I N P U T - F I L E .
5 2 O P E N O U T P U T P R I N T - F I L E .
5 3 P E R F O R M 3 0 0 - N E W - P A G E .
5 4 P E R F O R M 1 5 0 - R E A D - P R I N T.
5 5 P E R F O R M L A S T - S E C T I O N .
5 6 S T O P R U N .
5 7 1 5 0 - R E A D - P R I N T .
58 READ INPUT-FILE AT END MOVE 'Y' TO NO-MORE-INPUTS.
59 PERFORM 155-PROCESS UNTIL NO-MORE-INPUTS = 'Y'.
6 0 1 5 5 - P R O C E S S .
61 MOVE INPUT- IMAGE TO OUT-L INE.
6 2 W R I T E P R I N T - L I N E .
63 READ INPUT-FILE AT END MOVE 'Y' TO NO-MORE-INPUTS.
6 4 L A S T- S E C T I O N S E C T I O N .
6 5 2 0 0 - C L O S E - A L L .
6 6 C L O S E I N P U T - F I L E , P R I N T - F I L E .
6 7 D I S P L A Y ' E N D O F F I L E ' .
6 8 T H I R D - L E V E L S E C T I O N .
6 9 3 0 0 - N E W - P A G E .
7 0 M O V E S PA C E S TO P R I N T- L I N E .
71 WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE,
7 2 M O V E S PA C E S TO P R I N T- L I N E .
73 WRITE PRINT-LINE AFTER ADVANCING 1.

Format Notation

r

r

Throughout this document, formats are prescribed for various clauses or statements. They are
presented in ANSI COBOL notation, except for the use of brackets and the Prime extensions
discussed below.

ANSI Notation

Words: All underlined uppercase words are called key words and are required when the
clauses containing them are used. Uppercase words that are not underlined are optional.
Uppercase words, whether underlined or not, must be spelled correctly.
Lowercase words are generic terms used to represent variable COBOL words, literals,
PICTURE character-strings, comment-entries, or a complete syntactical entry that must be
supplied by the user. Where generic terms are repeated, a number appendage to the term
identifies that term. These terms appear in italic.

First Edition 4-5

COBOL85 Reference Guide

Level-numbers: When specific level-numbers appear in data-description-entry formats,
those specific level-numbers are required. In this document, the forms 01, 02, and so on
indicate level-numbers 1 through 9.

Brackets and Braces: When a portion of a general format is enclosed in brackets, [],
that portion may be included or omitted at your choice. Braces, { }, enclosing a portion of a
general format mean that you must select one of the options contained within the braces. In
both cases, a choice is indicated by vertically stacking the possibilities. However, if the items
within brackets are themselves enclosed in brackets, then the header of that section or
division is required if any other items are used. If a line within brackets is indented, it is part
of the preceding line. When brackets or braces enclose a portion of a format, but only one
possibility is shown, the brackets or braces delimit that portion of the format to which a
following ellipsis applies. If an option within braces contains only reserved words that are not
key words, then the option is a default option (selected unless one of the other options is
explicitly indicated).

The Ellipsis: In the general formats, the ellipsis represents the position at which repetition
may occur at your option. The portion of the format that may be repeated is determined as
follows: scanning right to left, determine the] or } immediately to the left of the ellipsis.
Continue scanning right to left and determine the matching [or {; the ellipsis applies to the
words between this matching pair of delimiters.

Format Punctuation: The punctuation characters comma and semicolon are shown in
some formats. They are optional and you may include or omit them. In the source program
these two punctuation characters are interchangeable. Neither may appear immediately
preceding the first clause of an entry or paragraph.
If desired, you can use a semicolon or comma between statements in the PROCEDURE
DIVISION.

Paragraphs within the IDENTIFICATION and PROCEDURE DIVISIONS, and the entries
within the ENVIRONMENT DIVISION and DATA DIVISION, must be terminated by the ,_
period.

Special Characters: The characters + - > < = when appearing in formats, although not
underlined, are required.

Examples: In the program format at the beginning of this chapter, PROGRAM-ID is a key
word that you must use, and you must follow it with a literal that you supply. The sort-file-
description-entry is optional. If you use it, you must follow it with one or more record
descriptions, which are described in Chapter 7. The entire ENVIRONMENT DIVISION is
optional; however, if you include CONFIGURATION SECTION, you must include
ENVIRONMENT DIVISION.

Prime Extensions to ANSI Notation
The following Prime terms are added to ANSI notation.
The term data-name means a user-defined name for a variable that may be subscripted or
qualified.

4-6 First Edition

Elements of COBOL85

Clause, Statement, Entry: Certain entries in the formats consist of one or more
capitalized words followed by the word clause, statement, or entry. These designate clauses
or statements described in other formats in appropriate sections of the text.

Underscore: For easier reference in the text, some lowercase words are followed by an
underscore and a digit or letter. This modification does not change the syntactical definition
of the word.

Multiple Formats: For a given COBOL85 verb, separate formats are mutually exclusive
options.

r Coding Rules

r
r

Figure 4-1 illustrates COBOL85 program coding rules, which are listed below.

Indicator
Area

S e q u e n c e I A r e a Area B Comments

12 73 80
Q10166-1LA-1-0

FIGURE 4-1
Standard COBOL Coding Areas

1. Each line of code may have a six-digit sequence number in positions 1-6, arranged so that
the source statements are in ascending order. Blanks are also permitted in positions 1-6.

2. Position 7 is used for four special coding symbols:

• An asterisk (*) in position 7 of the line causes that line to be treated as a comment.
Any characters may follow on that line. The asterisk and the characters are
produced on the source listing but serve no other purpose.

• If a slash (/) appears in position 7, the current line is treated as a comment line, and
the next line is printed at the top of a new page of the compiler-generated listing.

• A hyphen (-) is used to continue any word or literal from one line to another. Refer
to the section titled Continuation of Literals in this chapter for continuation rules.

• The letter D in position 7 causes the line to be treated as a comment, unless the
program is compiled with the -DEBUG option, in which case the line is treated as a
normal source statement.

3. Division, section, and paragraph headers must begin in Area A (positions 8-11).
paragraph-names must also appear in Area A (at the point where they are defined). All
level-numbers may appear in Area A or Area B.

4. All other program elements must be confined to Area B.
5. Positions 73-80 are ignored by the compiler unless the -RMARGIN option is in effect.

Frequently, these positions contain the program identification.
First Edition 4-7

COBOL85 Reference Guide

Punctuation and Separators
A separator is a string of one or more punctuation characters. The rules for formation of
separators are as follows:

• The space is a separator. Anywhere a space is used, more than one space may be used.
• The comma, semicolon, and period, when immediately followed by a space, are

separators. These separators may appear in a COBOL85 source program only where
explicitly permitted by the general formats, by syntax rules, or by statement and
sentence structure definitions. The period followed by a space also serves as a statement
terminator for conditionals.

• The right parenthesis and left parenthesis are separators. Parentheses may appear only in
balanced pairs of left and right parentheses delimiting subscripts, indexes, arithmetic
expressions, or conditions.

• The quotation mark is a separator. An opening quotation mark must be immediately
preceded by a space or left parenthesis; a closing quotation mark must be immediately
followed by a space, comma, semicolon, period, or right parenthesis. Quotation marks
may appear only in balanced pairs delimiting nonnumeric literals except when the literal
is continued. (See the section titled Continuation of Literals, later in this chapter.)

• The pseudo-text delimiter, =, is a separator. An opening pseudo-text delimiter must be
immediately preceded by a space; a closing pseudo-text delimiter must be immediately
followed by one of the following separators: space, comma, semicolon, or period.
Pseudo-text delimiters may appear only in balanced pairs delimiting pseudo-text in a
COPY...REPLACING statement. Chapter 15 discusses the COPY...REPLACING
statement.

• The separator, space, is optional immediately preceding all separators except

o As specified by syntax rules.
o When the separator is a closing quotation mark. In this case, a preceding space is

considered part of the nonnumeric literal and not a separator.
o Before the opening pseudo-text delimiter, where the preceding space is required.

• The separator, space, may immediately follow any separator except the opening
quotation mark. In this case, a following space is considered as part of the nonnumeric
literal and not as a separator.

Any punctuation character that appears as part of a PICTURE character-string or numeric
literal is not considered a punctuation character, but rather an element of that PICTURE
character-string or numeric literal. PICTURE character-strings are delimited only by the
following separators: space, comma, semicolon, or period.
The rules for forming separators do not apply to the characters that make up the contents of
nonnumeric literals, comment-entries, or comment lines.
The standard character set used by Prime is the ASCII character set. The set of characters,
with binary, decimal, octal, and hexadecimal equivalents is presented in Appendix B.

4-8 First Edition

Elements of COBOL85

The COBOL85 Character Set
The basic and indivisible unit of the language is the character. The COBOL85 language
character set, shown in Table 4-1, has the following characters: the numbers 0 through 9, the
26 uppercase and lowercase letters of the English alphabet, the space (blank), and special
characters. You use this character set to form COBOL85 character strings and separators. In
the case of nonnumeric literals, comment-entries, and comment lines, the character set is
expanded to include the computer's entire character set as defined in Appendix B.

Prime Extensions
A single quotation mark (apostrophe) is accepted as an equivalent of double quotation marks.
Quotation marks preceding and following a given item must be identical. (Note that you can
use double quotation marks and the question mark when entering COBOL85 programs with
ED, only if other deletion characters have been established with the PRIMOS command
TERM or the ED command SYMBOL, unless they are prefaced by the escape character.)
Use the backslash (\) to denote the beginning of a nonnumeric literal mnemonic that
corresponds to a character value in the Prime ECS character set. For more information see the
section, Nonnumeric Literals, later in this chapter, and Table B-3.

TABLE 4-1
COBOL85 Character Set

~

r

Class Character Meaning

Numeric 0...9 Digit

Alphabetic A...Z Uppercase letters
a...z Lowercase letters
Space Blank

Special characters Plus sign
- Minus sign

Underscore
* Asterisk (star)
= Equal sign
$ Currency sign
j Comma
5 Semicolon
. Period
»i Quotation marks» Apostrophe
(Left parenthesis
) Right parenthesis
> Greater than
< Less than
/ Slash (stroke)
\ Backslash

First Edition 4-9

COBOL85 Reference Guide

Collating Sequence
Each character in the Prime character set has a unique value, which establishes the collating
sequence for the character set. The characters are arranged in ascending collating sequence in
Table B-3 of Appendix B. The collating sequence can be modified by the PROGRAM
COLLATING SEQUENCE clause.

The Prime Extended Character Set
As of Rev. 21.0, Prime expanded its character set. The basic character set is the same as it
was before Rev. 21.0: it is the ANSI ASCII 7-bit set (called ASCII-7), with the 8th bit turned
on. However, the 8th bit is now significant; when it is turned off, it signifies a different
character. Thus, the size of the character set has doubled from 128 to 256 characters. This _.
expanded character set is called the Prime Extended Character Set (Prime ECS). Table B-3
shows the Prime Extended Character Set.

Note
The extra characters are not available on most printers and terminals. Check with your System
Administrator to find out whether you can use all of the characters in Prime ECS.

Specifying Prime ECS Characters
Direct Entry: On terminals that support Prime ECS, you can enter the printing characters
directly; the characters appear on the screen as you type them. For information on how to do
this, see the appropriate manual for your terminal.
A terminal supports Prime ECS if

• It uses ASCII-8 as its internal character set.
• The TTY8 protocol is configured on your asynchronous line.

If you do not know whether your terminal supports Prime ECS, ask your System
Administrator.
On terminals that do not support Prime ECS, you can enter any of the ASCII-7 printing
characters (characters with a decimal value of 160 or higher) directly by just typing them.

Octal Notation: If you use the Editor (ED), you can enter any Prime ECS character by
typing

^octal-value

where octal-value is the three-digit octal number given in Table B-3. You must type all three
digits, including leading zeros.
Before you use this method to enter any of the ECS characters that have decimal values
between 32 and 127, first specify the following ED command:

4-10 First Edition

Elements of COBOL85

MODE CKPAR

This command permits ED to print as *nnn any characters that have a first bit of 0.

Note
Prime ECS characters with decimal values less than 128 (octal 200) cannot be used in the
formation of COBOL85 words. They are only meaningful as nonnumeric literals.

character-strings

r
A character-string is a character or a sequence of contiguous characters that forms a
PICTURE character-string, a COBOL85 word, a literal, or a comment-entry. A character-
string is delimited by one of the separators defined in the previous section.

picture-strings
A PICTURE character-string (picture-string) consists of certain combinations of characters
in the COBOL85 character set used as a template. See PICTURE in Chapter 7, for a
description of the picture-string and the rules governing its use. A punctuation character that
is part of a picture-string is not considered as a punctuation character, but as a symbol in that
picture-string.

Word Formation

~

r

A COBOL85 word is a character-string of a maximum of 32 characters chosen from the
following set of 64 characters:

0 through 9 (digits)
A through Z (uppercase letters)
a through z (lowercase letters)
- (hyphen)
_ (underscore)

All words except lev el-numb ers, section-names, segment-numbers, and paragraph-names
must contain at least one alphabetic character, an underscore, or a hyphen. A word must not
begin or end with a hyphen or an underscore. It is delimited by a space, or by proper
punctuation. A word may contain more than one embedded hyphen or underscore;
consecutive embedded hyphens or underscores are also permitted.

Examples of valid words are

ITEM1
1STITEM
1ST-ITEM
3_5

All words are reserved words, implementor-names, or programmer-defined words.

First Edition 4-11

COBOL85 Reference Guide

Reserved Words
A reserved word is one of a specified list of words that may be used in COBOL85 source
programs, but which may not appear as programmer-defined words. Use them only as
specified in the general formats. Reserved words are of four types:

• Required Words

o Key words
o Special-character words

• Optional words
• Figurative constants
• Connectives

All COBOL85 reserved words are listed in Table B-2 of Appendix B.

Required Words
A required word is a word whose presence is required when the format in which the word
appears is used in a source program.

Key Words: A key word is required when the statement in which the word appears is used
in a source program. Within each statement format in this book, such words are uppercase
and underlined.

Special-character Words: The arithmetic operators and relation characters are reserved
words. Table 4-2 lists the operators and their meanings:

TABLE 4-2
Arithmetic and Relational Operators

Operator Meaning

Arithmetic:
+

*
1
**

Addition
Subtraction
Multiplication
Division
Exponentiation

Relational:

<
>

Equal to
Less than
Greater than

4-12 First Edition

Elements of COBOL85

Optional Words
Within each format, uppercase words that are not underlined are optional words. The
presence or absence of an optional word does not alter the meaning of the COBOL85
program in which it appears, but, when present, the word improves readability of the
program.

Figurative Constants
Figurative constants are reserved words used to name and reference specific constant
values. A figurative constant represents as many instances of the associated character as
required in the context of the statement. The singular and plural forms are equivalent and
may be used interchangeably.
A figurative constant may be used wherever literal appears in a format description; except
that, whenever the literal is restricted to numeric characters, the only figurative constant
permitted is ZERO (ZEROS, ZEROES). A figurative constant must not be bounded by
quotation marks.
Table 4-3 lists the figurative constants with their meanings.

TABLE 4-3
Figurative Constants

Constant

ZERO
ZEROS
ZEROES

LOW-VALUE
LOW-VALUES

HIGH-VALUE
HIGH-VALUES

QUOTE
QUOTES

SPACE
SPACES

ALL literal

Meaning

The ASCII character represented by hexadecimal BO.

The character whose hexadecimal representation is 00 (lowest
character in the ASCII or EBCDIC collating sequence).

The character whose hexadecimal representation is FF (highest
character in the ASCII or EBCDIC collating sequence).

The quotation mark, whose hexadecimal representation is A2 (").

The blank character represented by hexadecimal AO.

Represents one or more of the string of characters comprising the
literal. The literal must be either a nonnumeric literal or a figurative
constant other than ALL literal. When a figurative constant is used,
the word ALL is redundant and is used for readability only.

~

r First Edition 4-13

COBOL85 Reference Guide

Connectives
The three types of connectives are

• Qualifier connectives: OF and IN can associate a data-name, condition-name, text-
name, or paragraph-name with its qualifier. Qualifiers are discussed in the section
Qualification of Names, later in this chapter.

• Series connectives: Comma (,) or semicolon (;) can link two or more consecutive
operands.

• Logical connectives: AND, OR, and NOT can function in the formation of conditions.

Implementor-names
Implementor-names include device-names and switch-names unique to Prime computers.
These are listed in Chapter 6, The ENVIRONMENT DIVISION.

Programmer-defined Words
A programmer-defined word is one supplied by the programmer to satisfy the format of a
clause or statement. Each is constructed according to the rules for word formation. The
categories for these words include

level-numbers

data-names

file-names

condition-names

mnemonic-names

paragraph-names

section-names

segment-numbers

alphabet-names

index-names

class-names

With the exception of paragraph-names, segment-numbers, and section-names, all
programmer-defined words must contain at least one alphabetic character, an underscore, or a
hyphen.

4-14 First Edition

" >

Elements of COBOL85

If a programmer-defined word is not unique, there must be a unique method of referencing it
by using qualifiers (for example, TAX-RATE IN STATE-TABLE). Qualifiers are explained
in the section Qualification of Names, later in this chapter.

level-numbers
level-numbers are one-digit or two-digit, programmer-defined numbers in the DATA
DIVISION. They group items within the data hierarchy of the Record Description.
The range of levels is 01 through 49, and 66, 77, and 88. level-numbers 1 through 9 may be
written as single digits. The use of level-numbers is discussed in Chapter 7, The DATA
DIVISION.

data-names
A data-name is a word made up by the user to identify a data item used in a program. A
data-name always refers to a field of data, not to a particular value. It is formulated
according to the rules for word formation above. It must not be identical to a reserved word.
data-names are used in all divisions of a COBOL85 program. When referenced in the
PROCEDURE DIVISION, a data-name, if not unique, must be followed by a syntactically
correct combination of qualifiers, subscripts, or indexes sufficient to ensure uniqueness.

file-names
A file is a collection of data records of a similar class or application. A file-name is preceded
by an FD entry in the DATA DIVISION'S FILE SECTION. Rules for composition of the
name are identical to those for data-names. (See the section titled Word Formation, above.)
References to a file-name appear in PROCEDURE DIVISION 1-0 statements as well as in
the ENVIRONMENT DIVISION and DATA DIVISION.

con dition-names
A condition-name is a name assigned to a specific value, set of values, or range of values,
within a complete set of values that a data item may assume. The data item is called a
conditional variable, condition-names are allowed in the FILE, WORKING-STORAGE, and
LINKAGE sections of the DATA DIVISION, as well as in the SPECIAL-NAMES paragraph
of the ENVIRONMENT DIVISION.
Define a condition-name within the DATA DIVISION in a level-88 entry subordinate to the
associated data item name, or in the SPECIAL-NAMES paragraph, assigned to the ON
STATUS or OFF STATUS of switches. Rules for the formation of condition-name words
are the same as those specified in the section titled Word Formation. Additional information
concerning condition-names and procedural statements employing them is given in the
chapters on the DATA DIVISION and PROCEDURE DIVISION.

First Edition 4-15

COBOL85 Reference Guide

mnemonic-names
A mnemonic-name is assigned in the ENVIRONMENT DIVISION in the SPECIAL-NAMES
paragraph for reference in ACCEPT or DISPLAY statements or in switch-condition tests. A
mnemonic-name is composed according to the rules for word formation above.

paragraph-names and section-names
paragraph-names and section-names identify paragraphs and sections, respectively, in the
PROCEDURE DIVISION. They may be a maximum of 32 characters long, and may be all
alphabetic, all numeric, or alphanumeric.
Examples of valid paragraph-names are

050-NEXT-ITEM
050
NEXT-ITEM

seg men t-n umbers
A segment-number must be an integer in the range 0 through 99.

An index-name is a programmer-defined word that names an index associated with a specific
table.

class-names
A class-name is a programmer-defined word in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION that assigns a name to a specific set of characters to be used in
class condition tests.

4-16 First Edition

alphabet-names
An alphabet-name is a programmer-defined word in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION that assigns a name to a specific character set or collating
sequence.

index-names

Literals

r

r

r

Elements of COBOL85

A literal is a programmer-defined constant value. It is not identified by a data-name in a
program, but is completely defined by its own identity. A literal is either nonnumeric or
numeric.

Nonnumeric Literals
A nonnumeric literal may be any combination of printable or nonprintable characters in the
ASCII character set defined in Appendix B. This includes characters that can be represented
by Prime mnemonics.
A nonnumeric literal must be delimited by matching quotation marks or apostrophes.

Note
You can use double quotation marks when entering a COBOL85 program with ED only if you
change the erase character from quotation marks to some other character with the PRIMOS
command TERM or the ED command SYMBOL, or preface the double quotation marks with
the escape character.

All spaces enclosed by the delimiters are included as part of the literal. If the delimiter itself
is to be used within the literal string, you must write it twice. The last example below shows a
single quotation mark within a literal delimited by single quotation marks. The length of a
nonnumeric literal is computed excluding the delimiters. A nonnumeric literal must not
exceed 160 characters in length. The minimum length is 1.
If a Prime mnemonic is used to represent a character, the mnemonic must be enclosed within
parentheses and preceded by a backslash. The mnemonic must not be enclosed within
quotation marks or apostrophes, and embedded spaces are not allowed. The mnemonic must
be one of the mnemonics listed in Appendix B. The character represented by the mnemonic
is stored as a character string having a length of 1.

A nonnumeric literal that contains a mnemonic follows the same coding rules as any other
nonnumeric literal. A mnemonic is not converted to its character equivalent within comments.
If a mnemonic is enclosed within quotation marks or apostrophes, the system treats it as any
other nonnumeric literal.

Note
ED interprets the backslash (\) as a logical tab. If you are using ED to enter a character
represented by a mnemonic into a source program, you must define another character as your
logical tab in order to create the backslash required for the mnemonic.

A character represented by a mnemonic can be specified by itself, or juxtaposed with one or
more additional mnemonics, or juxtaposed with one or more quoted character strings. This
juxtaposition results in an implicit concatenation operation, unless you use a comma or
semicolon to separate the character represented by the mnemonic from the juxtaposed string
or character.

First Edition 4-17

COBOL85 Reference Guide

For example,

'hello' \(BEL)

is stored as a single character string having a length of 6. However,

'hello', \(BEL)

is stored as two separate character strings having lengths of 5 and 1, respectively.

Caution
Because of the implicit concatenation described above, you must use caution when using a
character represented by a mnemonic in conjunction with any verb or data-description-entry that
allows contiguous literals in its format.

The following examples illustrate several types of nonnumeric literals:

"ILLEGAL CONTROL CARD"

'IT WAS A DARK AND STORMY NIGHT'

"123"

' 1001 '

"3 .1414"

' - 6 '

' L INE1 ' \ (CR) 'L INE2 '

'SPACES ARE ALLOWED' \(CR) 'TO AID READABILITY'

'ABSENCE OF SEPARATORS' \ (BEL) 'IMPLIES CONCATENATION'

'PRESENCE OF SEPARATORS', \ (BEL) , 'RESULTS IN SEPARATE LITERALS'

\ (BEL) 'HELLO! ' \ (CR)

\(BEL) \(CR)

"DO'S AND DON'TS"

'HERE''S LOOKING AT YOU'

4-18 First Edition

Elements of COBOL85

Numeric Literals
A numeric literal must contain at least one and not more than 18 digits. A numeric literal
may consist of the characters (digits) 0 through 9 (optionally preceded by a sign) and a
decimal point, or a comma in the case, DECIMAL-POINT IS COMMA, discussed below. It
may contain only one sign character (except for COMP-1 and COMP-2, which can contain
two) and only one decimal point. The sign, if present, must appear as the leftmost character
of the numeric literal. If a numeric literal is unsigned, it is assumed to be positive.
A decimal point may appear anywhere within the numeric literal, except as the rightmost
character. If a numeric literal does not contain a decimal point, it is considered to be an
integer.
If a literal conforms to the rules for the formation of numeric literals, but is enclosed in
quotation marks, it is a nonnumeric literal and it is treated as such by the compiler.
The following examples are numeric literals:

7 2 + 1 0 11 3 . 1 4 1 5 9 - 6 - . 3 3 3 1 . 2 3 E 1 0

The last example uses floating-point format, a Prime extension that is described in the section
titled Data Representation and Alignment, later in this chapter.

By use of the clause, DECIMAL-POINT IS COMMA, the functions of the period and
comma may be interchanged, putting the European notation into effect. In this case, for
example, the literal value one thousand and one tenth is written as 1.000,1.

Continuation of Literals
When a literal is too long to fit on one line, the following conventions apply to the next line
of coding (continuation line):

• A hyphen in the indicator area (column 7) of a line indicates that the current line is a
continuation line and the preceding line is the continued line.

• Area A of a continuation line must be blank.
If the continued line contains a nonnumeric literal, the following rules apply:

o The first nonblank character of the continuation line must be a quotation mark and
the last nonblank character of the continued line must not be a quotation mark.

o The continuation starts with the character immediately after that quotation mark.
o All spaces at the end of the continued line are considered part of the literal.

The next two lines illustrate continuation of a nonnumeric literal:

MOVE 'NOW IS THE TIME FOR ALL GOOD MEN TO COME TO
' THE AID OF THE PARTY.' TO HEADER.

If the continued line contains a numeric literal, the first nonblank character of the
current line is the successor of the last nonblank character of the preceding line without
any intervening space.

First Edition 4-19

•

COBOL85 Reference Guide

Data Levels
The two levels of data are elementary and group.

Elementary Item
An elementary item is a data item containing no subordinate items. An elementary item must
contain a PICTURE clause, except when usage is described as COMPUTATIONAL-1,
COMPUTATIONAL-2, or INDEX. An elementary item must not span segment boundaries.
The maximum size of an elementary item is given in Appendix I.

Group Item
A group item is defined as one having further subdivisions, so that it contains one or more
elementary items or other groups. The maximum size of a group item is given in Appendix I.

Classes and Categories of Data
The classes of data are alphabetic, numeric, and alphanumeric. Within each class, the
categories of data are alphabetic, numeric, numeric edited, alphanumeric, and alphanumeric
edited. Every elementary item except an index data item belongs to a class and to a category,
as defined by its PICTURE or USAGE clause.
COBOL85 uses the category of a data item to determine the validity of operations such as
MOVE and COMPUTE, and for alignment. The categories have the following
characteristics. (More detail is given in the section PICTURE, in Chapter 7.)

Alphabetic Item
An alphabetic item consists of any combination of the 26 uppercase and the 26 lowercase
characters of the English alphabet and the space character. It is defined by PICTURE A.

Numeric Item
A numeric item consists only of digits, no more than one assumed decimal point, and an
optional sign. It is defined by PICTURE 9 or by one of the following:
USAGE IS BINARY
USAGE IS COMPUTATIONAL
USAGE IS COMPUTATIONAL-1
USAGE IS COMPUTATIONAL-2
USAGE IS PACKED-DECIMAL
USAGE IS COMPUTATIONAL-3

4-20 First Edition

Elements of COBOL85

Numeric Edited Item
A numeric edited item consists only of digits and special editing characters or editing
characters alone, as described in the section entitled PICTURE, in Chapter 7. It is defined by
PICTURE 9 plus editing characters.

Alphanumeric Item
An alphanumeric item consists of any combination of ANSI characters plus lowercase
letters, defined by PICTURE X.

r

-

Alphanumeric Edited Item
An alphanumeric edited item is an alphanumeric item defined by PICTURE X plus editing
characters described in the section entitled PICTURE, in Chapter 7.

Relationship of Classes and Categories of Data
The class rather than the category is used in some relation conditions, and for determining the
validity of operations on group items. For alphabetic and numeric elementary items, classes
and categories are the same. For elementary items, the alphanumeric class includes the
categories of alphanumeric edited, numeric edited, and alphanumeric. The class of a group
item is treated at execution time as alphanumeric regardless of the class of elementary items
subordinate to that group item. Table 4-4 depicts the relationship of the classes and categories
of data items.

r

TABLE 4-4
Classes and Categories of Data

Level of Data Class

Elementary

Group

Alphabetic
Numeric
Alphanumeric

Alphanumeric

Category

Alphabetic
Numeric
Numeric edited
Alphanumeric edited
Alphanumeric
Alphabetic
Numeric
Numeric edited
Alphanumeric edited
Alphanumeric

First Edition 4-21

COBOL85 Reference Guide

Data Representation and Alignment
Data is further categorized by the format in which it is stored in the computer. The formats
are display or unpacked decimal, packed decimal, binary, index, and floating-point. These
formats are specified by the USAGE clause, as outlined below.

USAGE
DISPLAY
PACKED-DECIMAL
COMPUTATIONAL-3
BINARY
COMPUTATIONAL
INDEX
COMPUTATIONAL-1
COMPUTATIONAL-2

Machine Description
Unpacked decimal
Packed decimal
Packed decimal
Binary
Binary
Binary
Single-precision floating-point
Double-precision floating-point

Note
You can use data items of all formats together in computations, although you can often save
time by ensuring that all data items used in any given computation are in the same format.

COBOL85 operates on five types of decimal data: leading separate sign, trailing separate
sign, packed decimal, leading embedded sign, and trailing embedded sign. The last two types
may be entered with an overpunch. Table B-12 in Appendix B summarizes the characteristics
of each decimal data type and the sign values.

Unpacked Decimal Item (DISPLAY)
An unpacked decimal item is one in which one byte (eight bits) is employed to represent
one digit as well as the sign. An exception is such an item with the SIGN IS SEPARATE
clause, discussed in Chapter 7. The PICTURE clause for an external decimal item may
contain only 9, S, V, and P. The USAGE for an unpacked decimal item is always DISPLAY,
whether implicit or explicit. Maximum size is 18 digits. Figure 4-2 represents the storage of
such an item.

Byte

9 9 9 S

Bit 17 2 5 3 2
Q10166-1LA-2-0

FIGURE 4-2
Unpacked Decimal Storage

4-22 First Edition

Elements of COBOL85

Packed Decimal Item (PACKED-DECIMAL or COMP-3)
A packed decimal item is one in which each byte represents two digits. It is defined by the
PACKED-DECIMAL or COMPUTATIONAL-3 (COMP-3) USAGE clause. The maximum
size is 18 digits.
Its PICTURE clause may contain only 9, S, V, and P. A packed decimal item defined by n
nines in its PICTURE occupies (n/2)+l bytes in memory. All bytes, except the rightmost,
contain a pair of digits.
The rightmost half-byte of a packed item contains a representation of the sign. Bit string
1100 represents a positive sign, 1101 represents a negative sign. Four bits are always reserved
for the sign in a packed field, even if the picture lacks the leading character S. For this
reason, the optimal space allocation for a packed decimal item is an odd-size field. Figure 4-3
represents the storage of such an item.

Byte

Bit

9 ! 9 9 | S

1 5 9 1 3 1 6
Q10166-1LA-4-0

FIGURE 4-3
Packed Decimal Storage

Binary Item (BINARYor COMP)
A binary item uses the base-2 system to represent an integer. The item occupies the
following storage: 16 bits if 1 to 4 nines are specified in the PICTURE clause, 32 bits if 5 to
9 nines are specified, and 64 bits if 10 to 18 nines are specified. The maximum size is 18
digits. If no PICTURE is specified, the default PICTURE is S9(4) (16 bits).
The leftmost bit of the storage area is the operational sign: 0 is positive, 1 is negative.
(BINARY and COMPUTATIONAL data types are stored in two's-complement form.) The
sign is optional in the PICTURE clause. If it is omitted, the value in this field is always
treated as positive. You must specify USAGE IS BINARY or USAGE IS
COMPUTATIONAL. Because this data type is represented in hardware by a signed data type
(fixed binary), the compiler generates extra code to return the absolute value for every
reference to this field when it is declared without a sign. In addition, if die PICTURE clause
of BINARY or COMP items specifies more than nine digit positions, or specifies positions to
the right of the decimal point, the compiler generates extra code to convert the contents of
such fields when they are referenced. Figure 4-4 represents the storage of this item.

r
First Edition 4-23

COBOL85 Reference Guide

S

Bit 1 2 32
Q10166-1LA-5-0

FIGURE 4-4
Binary Storage (PIC S9(9))

COMP and BINARY items are aligned by the compiler on halfword (16-bit) boundaries. 16-
bit binary items have a maximum range of-32768 to +32767 when using the -COMP option.
32-bit binary items have a range of-2147483648 to 2147483647, also when using the -COMP
option. (These two items correspond to INTEGER*2 and INTEGER*4, respectively, in
FORTRAN.) 64-bit binary items are converted to decimal when referenced and, therefore,
have the same range as 18-digit decimal data, that is, a PIC of from 9(18) to V9(18).
If you do not specify the -COMP compile line option, the number of 9s in the picture clause
is used in determining the range of values allowed. Even though 16 or 32 bits of storage are
allocated, they are not all accessible. If PIC S9(4) COMP is used, 16 bits of storage are
allocated, but 9999 is the maximum value allowed. A BINARY or COMP data item declared
as a PIC S9(l) has a range of-9 through +9.
See Chapter 2 for a description of the -COMP compiler option.

Index Item
An index item is defined with USAGE IS INDEX or INDEXED BY. It may not have a
PICTURE clause. It is a 64-bit signed binary item, the first half of which contains the
occurrence number; the last half of the offset. The maximum value of index items is listed in
Appendix I. Figure 4-5 represents the storage of this item.

" >

Occurrence Number Offset

Bit 1 2

FIGURE 4-5
Index Storage

33 64
Q10166-1LA-6-0

4-24 First Edition

Elements of COBOL85

Prime Extension: Floating-point Item (COMP-1, COMP-2)
A single-precision floating-point item is defined by a USAGE clause of COMPU-
TATIONAL-1 or COMP-1. No PICTURE clause is allowed. The item occupies 32 bits of
which bit 1 (the leftmost bit) is the sign, bits 2-24 arc the mantissa, and bits 25-32 contain the
exponent. The sign and mantissa arc treated as a two's-complement number, and the exponent
is an unsigned excess-128 binary exponent. Effective precision is between 22 and 23 bits
(+ 8,388,607). The exponent range is -128 through +127 (10 to the +38 power). Figure 4-6
represents the storage of this item.

S

r Mantissa Exponent

B i t 1 2 2 5 3 2
QW166-1L.4-7-0

FIGURE 4-6
Single-precision Floating-point Storage

A double-precision floating-point item is defined by a USAGE clause of
COMPUTATIONAL-2 or COMP-2. No PICTURE clause is allowed. The item occupies 64
bits of which bit 1 (the leftmost bit) is the sign, bits 2-48 are the mantissa, and bits 49-64
contain the exponent. The sign and mantissa are treated as a two's-complcmcnt number, and
the exponent is an unsigned excess-128 binary exponent. Effective precision is between 46
and 47 bits (+ 737,488,355,327). The exponent range is -32896 through +32639 (10 to the
+9823 or-9812 power). Figure 4-7 represents the storage of this item.

r

r

lantissa Exponent

4 9 6 4
QW166-1L.A.S-0

lit 1 2

FIGURE 4-7
Double-precision Floating-point Storage

Floating-point format is a Prime extension to ANSI COBOL intended for use in scientific
calculations, when very large or very small numbers must be represented, or when you wish
to call FORTRAN or PLlG subroutines that operate on floating-point (real) numbers.

In a COBOL85 statement, the format of a floating-point number is

[(+) 1 man tissaE [(+)] expo nent

First Edition 4-25

COBOL85 Reference Guide

The mantissa consists of one to seven digits for COMP-1 or one to fourteen characters for
COMP-2 with a required decimal point. Examples are

MOVE 1.23456E-10 TO ITEM1.
IF TEST1 > 4.0E14 PERFORM 050-EXCESS.

Floating-point items are compiler-aligned on halfword (16-bit) boundaries.

Notes
Be careful when you use floating-point operands in computations with other operand types. In
order to retain the precision of standard COBOL operand types, COMP-1 and COMP-2
operands may be converted to COBOL85 data types. In the process, the contents of the COMP-1
or COMP-2 operands may be truncated, because the range of floating-point operands exceeds
that of standard COBOL operand types. On the other hand, because the precision of standard
COBOL operands (1 to 18 digits) exceeds that of floating-point operands (7 or 14 digits),
precision can be lost when conversion to floating-point is required.
Also be aware that mixed operations can cause the nines syndrome, where, for example, a value
of 41 at the beginning of a mixed operation may end up as 40.9999.
In general, it is a good rule to use floating-point operands in a COBOL85 context only when
strictly required, as is the case when operands with extremely large ranges are required, or when
a COBOL85 program interacts with a FORTRAN, PL/I, or PL/I subset G program.
When using floating-point numbers, or results of operations using floating-point numbers, in
relational tests, use tests of GREATER THAN or LESS THAN, not of EQUALS, or round the
numbers before using or testing them.

Standard Alignment Rules
The COBOL85 compiler automatically aligns data as needed at compilation time. DISPLAY,
PACKED-DECIMAL, and COMP-3 items are aligned on byte boundaries, with the
exceptions discussed in the next section. All other items are aligned on 16-bit boundaries. At
execution time, the standard rules by which the compiler positions data within an elementary
item depend on the category of the receiving item. These rules are

• If the receiving data item is described as numeric, the data is aligned by decimal point
and is moved to the receiving digit positions with zero filling or truncation at either end,
as required.

• When an assumed decimal point is not explicitly specified, the data item is treated as if
it had an assumed decimal point immediately following its rightmost digit. It is aligned
as in the rule above.

• If the receiving data item is numeric edited, the data moved to the edited data item is
aligned by decimal point. Zero filling or truncation at either end occurs as required
except where editing requirements cause replacement of the leading zeros.

• If the receiving data item is alphanumeric (other than a numeric edited data item),
alphanumeric edited, or alphabetic, the sending data is aligned at the leftmost character
position in the receiving data item. Space filling or truncation occurs to the right, as
required.

4-26 First Edition

Elements of COBOL85

If the JUSTIFIED clause is specified for the receiving item, these standard rules are modified
as described in the section titled JUSTIFIED, in Chapter 7.

The alignment examples in Table 4-5 show the results of moving various length alphabetic
and alphanumeric items into an 11-character alphanumeric field, (b = blank.)

TABLE 4-5
Alphanumeric Alignment

Data to be Stored Receiving Field Receiving Field
Before Transfer After Transfer

ABC XXXXXXXXXXX ABCbbbbbbbb
ABCDEF1234 XXXXXXXXXXX ABCDEF1234b
AAABBBCCCDD XXXXXXXXXXX AAABBBCCCDD
AAABBBCCCDDDE XXXXXXXXXXX AAABBBCCCDD

The examples in Table 4-6 show the results of moving various length numeric items into a
six-character numeric field. (A = implied decimal point.)

TABLE 4-6
Numeric Alignment

Data to be Stored Receiving Field Receiving Field
Before Transfer After Transfer

3A4 999V999 003M00
345A678 999V999 345*678
12345A67890 999V999 345*678
34A 999V999 034*000
1234567890 999V999 890*000
1234567890 9999V99 7890*00
3A4 999999 000003

Prime Extension: Alignment of Substructures Within Structures
The compiler automatically aligns certain elements on 16-bit boundaries in order to allow
substructures to be passed to called programs correctly. Alignment follows these rules:

• Each level-01 or level-77 item is allocated on a 16-bit boundary.
• Each group item subordinate to a level-01 item is aligned on the largest boundary

required by any item contained in it.

COBOLS5 Type
DISPLAY
BINARY
COMP

Alignment Required
Byte
16 bits
16 bits

First Edition 4-27

COBOL85 Reference Guide

COMP-1 16 bits
COMP-2 16 bits
PACKED-DECIMAL Byte
COMP-3 Byte

• Compiler-generated filler is inserted into structures where necessary to make
substructures align on the proper boundary.

• If you specify the -SLACKBYTES option at compile time, the compiler issues a
diagnostic when filler is added to align a substructure. If you specify the -MAP option,
each data item so aligned is indicated by the phrase COMPILER-ALIGNED.

Examples: The following structure is to be passed to a called program. A and B may be
byte-aligned, while C and S2 require 16-bit alignment.

01 STRUCl.STRUCl.
02 A PIC X
02 S2.

03 B PIC X
03 C COMP.

The compiler actually allocates the structure as

01 STRUCl.
02 A PIC X.
02 FILLER PIC X.
02 S2.

03 B PIC X.
03 FILLER PIC x.
03 C COMP.

When S2 is passed to a called program, this automatic alignment allows the programmer to
pass the subgroup because it is already aligned to correspond to a level-01 or level-77 group -*^
in the called program. Thus, the argument can be described as a level-01 group in the called
program, as the following example illustrates.

LINKAGE SECTION.
01 M.

02 B PIC X.
02 C COMP.

PROCEDURE DIVISION USING M.

4-28 First Edition

Elements of COBOL85

Algebraic Signs
Algebraic signs fall into two categories: operational signs and editing signs. Operational signs
are associated with signed numeric data items and signed numeric literals to indicate their
algebraic properties. Editing signs appear on edited reports to identify the sign of the item.
The SIGN clause permits you to state explicitly the location of the operational sign. Editing
signs are inserted into a data item with the editing symbols of the PICTURE clause.

Qualification of Names

r
r

You must be able to identify, uniquely, every name that defines an element in a COBOL85
source program. You can make the name unique in its spelling or hyphenation, or by using
qualifier names.

Qualifiers are names of higher-level items (that is, of a lower level-number) preceded by the
word OF or IN. A series of items connected by OFs or INs may qualify one name. The
general formats for qualification are

Format 1

fdata-name-1 1 f f OFl . _"|< ,.t. > < rrr > data-name-2
[^cond i t i on -nameJ t ^ IN J |

Format 2

paragraph-name ' fOF\ r 1
I TN~ I sectwn~name

Format 3

«j Y^" r 'directory-name''file-name'

Format 4
status-name OF switch-name

The rules for qualification are

• Each qualifier must be of a higher level and within the same hierarchy as the name it
follows.

• The same name must not appear at two levels in the same hierarchy.
• If a data-name or a condition-name is assigned to more than one item in a source

program, the name must be qualified each time it is referred to.

First Edition 4-29

COBOL85 Reference Guide

* >

• A paragraph-name may be qualified only by its section-name. Therefore, two identical
paragraph-names must not appear in the same section. When a paragraph is qualified
by a section-name, the word SECTION must not appear. A paragraph-name need not
be qualified when referred to within the same section.

• A name can be qualified even though it does not need qualification. If more than one
combination of qualifiers can make a name unique, any combination can be used. The
complete set of qualifiers for a data-name must not be the same as any partial set of
qualifiers for another data-name.

• The maximum number of qualifiers is one for a paragraph-name and 48 for a data-
name or condition-name, file-names may be qualified only in a COPY statement.
mnemonic-names and section-names must not be qualified.

In the following example, the data-name YEAR requires qualification for reference because
it defines two elementary items, one in HIRE-DATE and one in TERMINATION-DATE.

01 EMPLOYEE-RECORD
05 NAME
05 ADDRESS
05 HIRE-DATE

10 YEAR
10 MONTH
10 DAYY

05 TERMINATION-DATE
10 YEAR
10 MONTH
10 DAYY

YEAR OF HIRE-DATE is a qualified reference that differentiates between year fields in
HIRE-DATE and TERMINATION-DATE. YEAR OF HIRE-DATE IN EMPLOYEE-
RECORD is also a valid qualifier for the first YEAR field.

Arithmetic Expressions
An arithmetic expression must be one of the following:

• A name of a numeric elementary item
• A numeric literal
• Such names and literals separated by arithmetic operators
• Two arithmetic expressions separated by an arithmetic operator
• An arithmetic expression enclosed in parentheses

Any arithmetic expression may be preceded by a unary operator. The permissible
combinations of variables, numeric literals, arithmetic operators, and parentheses are given in
Table 4-7.

4-30 First Edition

Elements of COBOL85

TABLE 4-7
Symbol Combinations in Arithmetic Expressions

Second Symbol
First Symbol Variable * I + - ** Unary + or - (

Variable
*/ + -**
Unary + or -
(
)

P = Permitted, X = Invalid.

Names and literals appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic may be performed.

Arithmetic Operators
The characters in Table 4-8 represent the binary and unary arithmetic operators.

TABLE 4-8
Binary and Unary Arithmetic Operators

S y m b o l M e a n i n g

Binary Arithmetic Operators

+ Addition
- Subtraction
* Multiplication
1 Division

** Exponentiation

Unary Arithmetic Operators

The effect of multiplication
by +1 (sign normalization)

The effect of multiplication
by -1 (sign inversion)

Parentheses

() Encloses expressions to specify
the sequence in which
conditions are evaluated

First Edition 4-31

COBOL85 Reference Guide

Rules
Follow these general rules for arithmetic expressions:

• Use parentheses in arithmetic expressions to specify the order in which elements are to
be evaluated. Expressions within parentheses are evaluated first. Within nested
parentheses, evaluation proceeds from the innermost set to the outermost set.

• When you do not use parentheses, the following hierarchical order of execution is implied:

1. Unary plus and minus
2. Exponentiation
3. Multiplication and division
4. Addition and subtraction

The order of execution of consecutive operations of the same hierarchical level is from
left to right. For example,

A + B/(C-D*E)

This expression is evaluated in the following sequence:

1. Compute the product D times E, considered as intermediate result Rl.
2. Compute intermediate result R2 as the difference C - Rl.
3. Divide B by R2, providing intermediate result R3.
4. Compute the final result by addition of A to R3.

Without parentheses, the expression A + B/C-D*Eis evaluated as

Rl = B/C
R2 = D * E
R3 = A + R1

The final result is R3 - R2.
• When you use parentheses, use the following punctuation rules:

1. Precede a left parenthesis with one or more spaces.
2. Follow a right parenthesis with one or more spaces.

• Combine operators, variables, and parentheses in arithmetic expressions as summarized
in Table 4-7.

• Begin an arithmetic expression only with one of the symbols (+ - or a variable; end it
only with a) or a variable. Each left parenthesis must be to the left of its corresponding
right parenthesis.

• Prime Extension: Spaces are always optional before and after the * / and ** binaiy
arithmetic operators. The following examples are valid arithmetic expressions.

X = A*B
X = A/2
X = A**2

■ >

" >

4-32 First Edition

Elements of COBOL85

Prime Extension: When the + binary arithmetic operator separates two numeric
elementary data items, spaces are optional before and after the + operator. The
following example is a valid arithmetic expression.

X = A+B

When the + binary arithmetic operator immediately precedes a numeric literal, a space
must separate the + operator and the numeric literal. The following examples are valid
arithmetic expressions.

X = A+5
X= 10+5

But these are invalid arithmetic expressions.

X = A+5
X = 10 +5

When the - binary arithmetic operator immediately precedes a numeric literal, a space
must separate the - operator and the numeric literal. The following examples are valid
arithmetic expressions.

X = A-5
X= 10-5

But these are invalid arithmetic expressions.

X = A-5
X = 10 -5

• When the - binary arithmetic operator immediately follows a numeric elementary data
item, a space must separate the data item and the - operator. The following examples
are valid arithmetic expressions.

X = A-B
X = A-5

But these are invalid arithmetic expressions.

X = A-B
X = A-5

Arithmetic Statements
The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and
SUBTRACT statements. These statements have several common features.

• The data descriptions of the operands need not be the same; any necessary conversion
and decimal point alignment is supplied throughout the calculation.
The maximum size of each operand is 18 decimal digits. The composite of operands,
which is a hypothetical data item resulting from the superimposition of operands

First Edition 4-33

•

COBOL85 Reference Guide

aligned on their decimal points, must not contain more than 18 decimal digits. An
example is given in the section titled Arithmetic Statements in the PROCEDURE
DIVISION in Chapter 8.

Overlapping Operands
When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE,
SET, STRING, UNSTRING, or other statements share a part of their storage areas, the result
of the execution of such a statement is undefined and unpredictable.

Conditional Expressions
Conditional expressions identify conditions that are tested to enable the object program to
select between alternate paths of control depending upon the truth value of the condition.

Simple Conditions
The simple conditions are the relation, class, condition-name, switch-status, and sign
conditions. A simple condition has a truth value of true or false. The inclusion in parentheses
of simple conditions does not change the simple truth value.

Relation Condition: A relation condition causes a comparison of two operands. A
relation condition may have one of these formats:

Format 1
operand relation operand

Format 2
rCORRESPONDING ~l J , .

Pf,RR operand relation operand

The relation is a relational operator: EQUAL, GREATER, LESS, or the negation of one of
these. A relation condition has a truth value of true if the relation exists between the
operands. The operand is a data-name, literal, arithmetic expression, or figurative-constant.

Prime Extension: The CORRESPONDING option in relation conditions is a Prime
extension and can be used only when the operands arc group items.

4-34 First Edition

~s

Elements of COBOL85

The general format of a relation condition is as follows:

(data-name-1
f CORRESPONDING ~| I literal-1

_J j arith-expr-1
[̂ index-name-1

L.CORR > <

'

r

r
r

IS [NOT] GREATER THAN ^
IS [NOT] LESS THAN
IS [NOT] EQUAL TO
IS [NOT] GREATER THAN

OR EQUAL TO f data-name-2
IS [NOT] LESS THAN J literal-2

OR EQUAL TO f] arith-expr-2
I S [N O T] > [^ i n d e x - n a m e - 2
IS [NOT] <
IS [NOT] =
IS [NOT] >=

LIS [NOTJ <=

Note
Although required where indicated in formats, the relational characters < > and = are not
underlined in this text

The relational operator specifies the type of comparison to be made in a relation condition. A
space must precede and follow each reserved word comprising the relational operator. When
used, NOT and the next key word or relation character form one relational operator defining
the comparison to be executed for truth value. Thus NOT EQUAL is a truth test for an
unequal comparison; NOT GREATER is a truth test for an equal or less comparison.

Numeric and Nonnumeric Comparisons: Comparison of two numeric operands of
different formats is permitted. If either operand is nonnumeric, the comparison is nonnumeric.

• Numeric comparisons: For elementary operands whose class is numeric, a comparison
is made with respect to their algebraic value. The length of the operands is not
significant. Zero is considered a unique value regardless of the sign. It is neither
positive nor negative, and fails these sign tests.
Comparison of these operands is permitted regardless of their usage. Unsigned numeric
operands are considered positive.
The data operands are compared after alignment of their decimal points. An index-name
or index item may appear in a numeric comparison.

• Nonnumeric comparisons: For nonnumeric operands, a comparison is made with
respect to the Prime collating sequence of characters. The value associated with each
ASCII character in the Prime computer is the basis for the comparison. The collating
sequence can be modified by the PROGRAM COLLATING SEQUENCE clause.
(Refer to Appendix B for all ASCII character representations and the Prime collating
sequence.)
Comparison proceeds by comparing characters in corresponding character positions
starting from the high-order (left) end and continuing until either a pair of unequal
characters is encountered or the low-order end of the operand is reached. The operands
are determined to be equal if all pairs of characters compare equally through the last
pair, when the low-order end is reached.
The first pair of unequal characters encountered is compared to determine their relative
position in the collating sequence. The operand that contains the character positioned
higher in the collating sequence is considered to be the greater operand.

First Edition 4-35

COBOL85 Reference Guide

The size of an operand is the total number of characters in the operand.
If the operands are of unequal size, comparison proceeds as though sufficient spaces
were added to the left of the shorter operand to make the operands of equal size.
If one operand is a literal, the data class of the two operands must be the same.
If one of the operands is specified as numeric, it must be an integer data item or an
integer literal and
o If the nonnumeric operand is an elementary data item or a nonnumeric literal, the

numeric operand is treated as though it were an elementary alphanumeric data item
of the same size as the numeric data item.

o If the nonnumeric operand is a group item, the numeric operand is treated as though
it were a nonnumeric item of the same size as the numeric data item.

o A noninteger numeric operand cannot be compared to a nonnumeric operand.
o Numeric and nonnumeric operands may be compared only when their usage is the

same.

Class Condition: The class condition determines whether an operand is numeric,
alphabetic, lowercase alphabetic, uppercase alphabetic, or contains only the characters in the
set of characters specified by the CLASS clause as defined in the SPECIAL-NAMES
paragraph of the ENVIRONMENT DIVISION.
The general format for the class condition is

("NUMERICALPHABETIC
data-name IS [NOT] < ALPHABETIC-LOWER

ALPHABETIC-UPPER
ĉlass-name-1

data-name must be described, implicitly or explicitly, as USAGE IS DISPLAY.
A NUMERIC data item consists entirely of the digits 0 through 9, with or without the
operational sign.
The NUMERIC test cannot be used with data-name described as alphabetic or as a group
item composed of elementary items whose data description indicates the presence of
operational signs.
If the data description of the data-name being tested does not contain an operational sign, the
data-name is determined to be numeric only if the contents are numeric and an operational
sign is not present.
If the data description of the data-name being tested contains an operational sign, the data-
name is determined to be numeric only if the contents arc numeric and a valid operational
sign is present.
An ALPHABETIC data item consists entirely of the uppercase letters A through Z, space, or
the lowercase letters a through z, space, or any combination of the uppercase and lowercase
letters and spaces.

4-36 First Edition

Elements of COBOL85

An ALPHABETIC-UPPER data item consists entirely of the uppercase letters A through Z,
and space.
An ALPHABETIC-LOWER data item consists entirely of the lowercase letters a through z,
and space.
The ALPHABETIC, ALPHABETIC-UPPER, and ALPHABETIC-LOWER tests cannot be
used with a data-name described as numeric. The data-name being tested is determined to be
alphabetic only if the contents consist of any combination of the uppercase and lowercase
letters and spaces. The data-name being tested is determined to be alphabetic-upper only if
the contents consist of any combination of the uppercase letters and spaces. The data-name
being tested is determined to be alphabetic-lower only if the contents consist of any
combination of the lowercase letters and spaces.
A class-name-1 data item consists entirely of characters included in the set of characters
identified by class-name-1 in the CLASS clause in the SPECIAL-NAMES paragraph.
The class-name-1 test cannot be used with a data-name described as numeric.

Condition-name Condition: In a condition-name condition, a conditional variable is
tested to determine whether or not its value is equal to a value associated with one of its
condition-names in a level-88 entry of the DATA DIVISION. The general format for the
condition-name statement is as follows:

[NOT] condition-name
If the condition-name is associated with a range or ranges of values, then the conditional
variable is tested to determine whether or not its value falls in this range, including the end
values. (See Chapter 7 for details.)
The rules for comparing a conditional variable with a condition-name value are the same as
those specified for relation conditions.
The result of the test is true if the content of the field associated with the condition-name
equals one of the values specified for that condition-name.

Switch-status Condition: A switch-status condition determines the ON or OFF status
of a switch. The switch-name and the ON or OFF value associated with the condition must be
named in the SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION. The
general format for the switch-status statement is as follows:

[NOT] status-name

The result of the test is true if the switch is set to the ON or OFF status associated with the
switch in the SPECIAL-NAMES paragraph.

First Edition 4-37

COBOL85 Reference Guide

Sign Condition: The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to 0. The general format for a sign
condition is

ca . -i f POSITIVE 1fdata-name\ I NEGATIVE I
\ a n t h - e x p r f ^ ^ J

Complex Conditions
A complex condition is formed by combining simple conditions, combined conditions and/or
complex conditions with logical connectors Oogical operators AND and OR), or by negating
these conditions with logical negation (the logical operator NOT). The truth of a complex
condition is calculated as described in the section titled Condition Evaluation Rules, below.
The logical operators are the following:

Logical Meaning
Operator
AND Logical conjunction; the truth value is true if both of the conjoined conditions are true;

false if one or both of the conjoined conditions is false.
OR Logical inclusive OR; the truth value is true if one or both of the included conditions

arc true; false if both included conditions are false.
NOT Logical negation is the reversal of the truth value; the truth value is true if the condi

tion is false, and false if the condition is true.

Logical operators must be preceded and followed by a space.

Negated Simple Conditions: The general format of a negated simple condition is

NOT simple-condition

Thus, the simple-condition is negated through the use of the logical operator NOT.
The truth value of a negated simple-condition is the opposite of the truth value for a simple-
condition. The negated condition is true if the simple-condition is false, and false if the
simple-condition is true.
Inclusion in parentheses of a negated simple-condition does not affect the truth value.

Combined and Negated Combined Conditions: A combined condition is two or
more conditions connected by one of the logical operators AND or OR. A combined
condition has the format

[NOT] condition-1 1 {jfi^\ [NQT] condition-2 I • • •J

*)

4-38 First Edition

Elements of COBOL85

where condition is

• A simple condition
• A negated simple condition
• A combined condition
• A negated combined condition, that is, the logical operator NOT followed by a

combined condition enclosed in parentheses
• Combinations of the above

Table 4-9 sets forth the permissible combinations of conditions, logical operators, and
parentheses.

TABLE 4-9
Permissible Combinations of Conditions, Logical Operations, and Parentheses

Place in
Expression

Element First Last When not first, the ele
ment can be immediately
preceded only by

When not last, the element
can be immediately fol
lowed only by

Simple-condition Yes Yes OR, NOT, AND, (OR, AND,)

OR and AND No No Simple-condition,) Simple-condition, NOT, (

NOT Yes No OR, AND, (Simple-condition, (

(Yes No OR, NOT, AND, (Simple-condition, NOT, (

) No Yes Simple-condition,) OR, AND,)

Multiple Conditions: Multiple conditions refer to complex conditions grouped in
parentheses.
Parentheses are permitted to an arbitrary depth. Often, however, you can enhance clarity by
rewriting the condition without parentheses.
For example, in the statement

IF a = b AND (c = d OR e = 0

explicit grouping may be achieved by coding
IF a = b AND c = d OR a = b AND e = f

r
r First Edition 4-39

~ \

COBOL85 Reference Guide

Abbreviated Combined Conditions
Abbreviated combined conditions are conditions with implied subjects or implied
operators. That is, you can omit the subject of the relation condition, or both the subject and
the relational operator, if they are the same as those in the preceding clause.

The format for an abbreviated combined condition is

[NOT] relation-condition < -j _ > [NOT] [relational-operator] operand > • • •

You can use either form of abbreviation: the omission of subject, or the omission of subject
and relational operator. The effect of such abbreviations is that of inserting the previously
stated subject in place of the omitted subject, or the previously stated relational operator in
place of the omitted operator. All insertions terminate once a complete simple condition is
encountered within a complex condition.

In all instances, the results must comply with the rules outlined in Table 4-9 above.

If the word NOT is used in an abbreviated condition, it is evaluated as follows:

• NOT participates as part of the relational operator if the word immediately following
NOT is GREATER, >, LESS, <, EQUAL, or =.

• Otherwise, NOT is interpreted as a logical operator with the result that the implied
insertion of subject or relational operator results in a negated relation condition.

Below are examples of abbreviated combined conditions with their expanded equivalents:

Abbreviated Combined
and Negated Combined
Relation Conditions Expanded Equivalent

a = b O R c O R d a = b 0 R a = c 0 R a = d

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)

NOT a = b OR c (NOT (a = b)) OR (a = c)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

NOT (a NOT > b AND c NOT ((((a NOT > b) AND (a NOT > c))
AND NOT d) AND (NOT (a NOT > d))))

Condition Evaluation Rules
COBOL85 uses the following order of logical evaluation to determine the truth value of a
condition.

1. Conditions within parentheses are evaluated first. Within nested parentheses, evaluation
proceeds from the least inclusive (innermost) condition to the most inclusive
(outermost) condition.

4-40 First Edition

Elements of COBOL85

2. Truth values for simple conditions are evaluated in the following order:
Relation (following the expansion of any abbreviated relation condition)

Class

Condition-name

Switch-status

Sign
3. Truth values for negated simple conditions are established.
4. Truth values for combined conditions are established with this hierarchy:

AND logical operators

OR logical operators

5. Truth values for negated combined conditions are established.
6. When the sequence of evaluation is not completely specified by parentheses, the order of

evaluation of consecutive operations of the same hierarchical level is from left to right.

The following examples illustrate the condition evaluation rules:

1. The condition below contains both AND and OR connectors.

IF X = Y AND FLAG = "Z" OR SWITCH = 0, GO TO PROCESSING.

Execution is as follows, depending on various data values listed in Table 4-10:

TABLE 4-10
Combined Condition Evaluation

Data Values

X Y FLAG SWITCH GOTO Executes

10 10 'Z ' Yes
10 11 'Z' No
10 11 *Z' Yes
10 10 No
6 3 y 0 Yes
6 6 'p' No

2. A < B OR C = D OR E NOT > F: The evaluation is equivalent to(A<B)or(C = D)
or NOT (E > F) and is tme if any of the three individual parenthesized simple
conditions is true.

First Edition 4-41

COBOL85 Reference Guide

3. The following time-card record description includes three condition-names. It is
followed by an evaluation.

01 TIME-CARD
05 EMP-STATUS PIC X.

88 W VALUE 'W .
88 H VALUE 'H'.
88 E VALUE 'E'.

0 5 H O U R S P I C 9 9 .

IF W AND HOURS NOT = 0 ...

The evaluation is equivalent to

IF (EMP-STATUS = 'W') AND NOT (HOURS = 0)...

and is true only if both the simple conditions are true.
4. A = 1 AND B = 2 AND G > -3 OR P NOT EQUAL TO "SPAIN" is evaluated as

[(A = 1) AND (B = 2) AND (G > -3)] OR NOT (P = "SPAIN")

If P = "SPAIN", the complex condition can be true only if all three of the following are
true:

A= 1
B = 2
G>-3

However, if P is not equal to "SPAIN", the complex condition is true regardless of the
values of A, B, and G.

Variabie-length Records
A variable-length record is a record associated with a file whose file-description-entry
permits records to contain a varying number of character positions. Using variable-length
record functionality can save substantial disk space, depending upon the application. The
following paragraphs discuss variable-length record support and methods of specifying
variable-length records in COBOL85.

File Types That Support Variable-length Records
The following file types support variable-length records:

• PRIMOS sequential disk files
• PRISAM sequential, indexed, and relative files
• MIDASPLUS indexed files
• Magnetic tape files

4-42 First Edition

Elements of COBOL85

Variable-length records for any of these file types can vary in length from one to the
maximum length supported for the particular file type. Any keys defined within records must
be within the fixed portion of the record descriptions associated with a variable-length file.

Note
COBOL85 does not support COMPRESSED and PRINTER variable-length file types.

File Formats of Variable-length Records
For information on variable-length file formats for sequential disk files, indexed files,
relative files, and sequential tape files, see Chapters 9, 10, 11, and 12, respectively.
For additional information on MIDASPLUS and PRISAM file types that support variable-
length records, refer to the MIDASPLUS User's Guide and the PRISAM User's Guide.

Specifying Variable-length Records in a Program
Use any of the following methods to specify variable-length records in a COBOL85 program:

The -VARYING Default Compiler Option: The -VARYING compiler option, which is
specified by default, causes COBOL85 to treat as variable-length files all files that have file
descriptions containing multiple record-description-entries of different sizes. -VARYING also
causes all files having file descriptions that contain record descriptions with variable occurrence
data items to be treated as variable-length files. Variable occurrence data items defined in the
WORKING-STORAGE SECTION are also treated as variable in length. For additional
information on the -VARYING and -NOJVARYING compiler options, see Chapter 2.

The RECORD IS VARYING and RECORDING MODE IS V Clauses: The specification
of the following clauses in a file description entry specifies variable-length records:

RECORD IS VARYING IN SIZE [[FROM integer-1]
[TO integer-2] CHARACTERS]

RECORDING MODE IS V

Specifying either of these clauses overrides the -NO_VARYING compiler option. Also,
specifying these clauses in file descriptions that do not contain records of different sizes or
variable occurrence data items allows such files to be formatted as variable-length files. For
additional information on these clauses refer to Chapter 7.

Variable Occurrence Data Items: A variable occurrence data item is a table element
that is repeated a variable number of times. The specification of the following clause in a
record description entry specifies a variable occurrence data item:

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name

First Edition 4-43

COBOL85 Reference Guide

Using the OCCURS DEPENDING ON clause in conjuction with the -VARYING option, or
within a file description that contains a RECORD IS VARYING or RECORDING MODE IS V
clause, denotes a variable-length table whose size is dependent upon the value of a data-name.
For additional information on the OCCURS DEPENDING ON clause refer to Chapter 7.

Specifying Variable-length Records in CREATK
To create a MIDASPLUS file of variable-length records, use CREATK as follows:

1. Begin the CREATK dialog, indicating that you are creating a keyed-indexed access
file, the only type of MIDASPLUS file that can contain variable-length records.

2. When CREATK prompts DATA SIZE IN WORDS, enter a 0 followed by two values.
The first value sets the minimum record size; the second value sets the maximum
record size. The minimum must be at least 1; the maximum can be at most 32767.

Three CREATK commands, INITIALIZE, GET, and PRINT, help you administer variable-
length record files.
For more information, see the MIDASPLUS User's Guide.

Specifying Variable-length Records in DDL
To specify a PRISAM file of variable-length records, use one of the following methods:

• Specify multiple record descriptions of varying lengths
• Specify an OCCURS clause with the DEPENDING phrase

Note
Relative files are always preallocated as maximum length records whether or not you specify
them as fixed or variable.

For more information, see the PRISAM User's Guide.

Table Handling
This section discusses tables of repeating data items and various means of referring to those
items according to their positions in the tables.

Table Definition
To define a data item as a table element, use an OCCURS clause in the item's data-
description-entry. The OCCURS clause specifies that the item is to be repeated as many
times as stated. The item's name and description apply to each repetition or occurrence. Since
each occurrence of a table element does not have a unique name, to refer to a particular
occurrence, you must specify both the name and the occurrence number of the table element.
The occurrence number is called a subscript.

4-44 First Edition

Elements of COBOL85

You can specify the number of occurrences of a table element to be fixed or variable. Use the
DEPENDING phrase of the OCCURS clause to specify variable occurrence data items.
See the OCCURS clause in Chapter 7 for more information.

r

r
r

Table Initialization
Table initialization, if required, may be achieved either in the WORKING-STORAGE
SECTION or in the PROCEDURE DIVISION. The VALUE clause is not permitted in a
data-description-entry specifying an OCCURS or REDEFINES clause, or in any entry
subordinate to one specifying an OCCURS or REDEFINES clause. The following
paragraphs suggest means of assigning values to table elements.
In the WORKING-STORAGE SECTION of the DATA DIVISION, tables can be initialized
in one of two ways:

• If the elements in a table do not need to be individually initialized, you can specify the
VALUE clause in the data-description-entry containing the table name. Then give the
subordinate data-description-entry an OCCURS clause defining the structure of the table.
For example,

01 A-TABLE
05 B-TABLE

01 STATE-TABLE
05 STATE

VALUE ZEROS.
PIC 9(3) OCCURS 100 TIMES

VALUE 'CALAMAPAVA' .
PIC XX OCCURS 5 TIMES.

• If the elements in a table need to be individually initialized, you must first define the
table as a nontable structure with the desired number of characters. You can then
specify a VALUE clause in each element entry of the nontable structure and then
redefine the structure as a table with REDEFINES plus a subordinate entry containing
an OCCURS clause.

10.
'BOSTON DISTRICT BRANCH'
11.
'NEW YORK CITY BRANCH '
12.
'HOUSTON HOME OFFICE '

For example

01 WAREHOUSE.
05 FILLER PIC 99 VALUE
05 NAME PIC X(22) VALUE
05 FILLER PIC 99 VALUE
05 FILLER PIC X(22) VALUE
05 FILLER PIC 99 VALUE
05 FILLER PIC X(22) VALUE

01 WARE-HOUSE REDEFINES WAREHOUSE.
05 HOUSES OCCURS 3 TIMES.

10 HOUSE - N O P I C 99.
10 HOUSE -NAME PIC X(22) .

In the PROCEDURE DIVISION, you can initialize a table with MOVE statements:

MOVE '10BOSTON DISTRICT BRANCH11NEW YORK CITY BRANCH 12HOUST

'ON HOME OFFICE ' TO WAREHOUSE.

First Edition 4-45

COBOL85 Reference Guide

Using Subscripts
Use subscripts to refer to an individual element within a table of like elements that have not
been assigned individual data-names.

Format

{integer-1

data-name-2 [{±} integer-2]
index-name [{±} integer-3]
arith-expr [{±} integer-4]

Syntax Rules
1. The subscript can be represented by a numeric literal, by a numeric data-name, by an

index-name, or by an arithmetic expression. The data-name subscripts may themselves
be qualified or subscripted.

2. The subscript may be signed. It must have a positive integer value. The lowest possible
subscript value is 1. This value points to the first element of the table. The next elements
of the table are pointed to in turn by subscripts whose values are 2, 3, and so on. The
highest permissible subscript value, in any particular case, is the maximum number of
occurrences of the item as specified in the OCCURS clause.

Note
Literal subscripts are range-checked at compile time. Variable subscripts can be checked at
runtime if the -RANGE option is specified at compile time.

3. The subscript that identifies a table element is delimited by the balanced pair of
separators, left parenthesis and right parenthesis, following the table element data-name.
When more than one subscript is required, write them in the order of successively less
inclusive dimensions of the table organization.

4. An index-name is a name specified in the INDEXED BY phrase in the table definition.
The value of an index corresponds to the occurrence number of an element in the
associated table.

5. An index-name must be initialized before it is used in a table reference. An index-name
can be given an initial value by a SET, a SEARCH ALL, or a Format 4 PERFORM
statement.

6. An index-name can be modified only by the SET, SEARCH, and Format 4 PERFORM
statements.

7. Data items described by the USAGE IS INDEX clause permit storage of the values
associated with index-names. Such data items are called index data items.

Types of Subscripting
You can use any of the following types of subscripting to specify the occurrence number of a
particular table clement:

• Literal subscripting
• data-name subscripting

4-46 First Edition

Elements of COBOL85

• Arithmetic expression subscripting
• Direct indexing
• Relative indexing

Literal Subscripting: An integer in parentheses is used for literal subscripting. For
example, given the following three-element array,

01 ARRAY.
05 ELEMENT PICTURE S9(4) OCCURS 3 TIMES.

the statement below results in the contents of the second ELEMENT of ARRAY being
moved to the field called PART-NO.

MOVE ELEMENT(2) TO PART-NO.

The integer 2 is a literal subscript.

data-name Subscripting: An additional data-description-entry is required to define a
data-name to be used as a subscript (SUBSCRIPTNO in this example):

01 ARRAY.
05 ELEMENT PICTURE S9(4) OCCURS 10 TIMES.

01 SUBSCRIPTNO
01 PART-NO
01 ONE
01 TWO
01 THREE

PIC 99.
PIC X(4).
PIC S9(1)
PIC S9(1)
PIC S9(l)

VALUE 1
VALUE 2
VALUE 3

MOVE 2 TO SUBSCRIPTNO.
PERFORM 050-TABLERUN.

r
r

050-TABLERUN.
MOVE ELEMENT(SUBSCRIPTNO) TO PART-NO.

Prime Extension: Arithmetic Expression Subscripting: This form of subscripting is
similar to data-name subscripting except that any subscript may be an arithmetic expression.
The arithmetic expression, at the time of reference, must evaluate to a positive integer. For
example, given the array and subscript defined above, the following statement results in the
contents of the seventh ELEMENT of ARRAY being moved to PART-NO.

MOVE ELEMENT(ONE + TWO * THREE) TO PART-NO.

ONE + TWO * THREE is an arithmetic expression that evaluates to a positive 7.

First Edition 4-47

COBOL85 Reference Guide

Direct Indexing: Direct indexing is specified by using an index-name alone within
parentheses, for example, ELEMENT(INDXl).
Consider the following illustration:

01 TABLE-A.
05 ELEMENT OCCURS 6 TIMES INDEXED BY INDXl.

SET INDXl TO 4.
MOVE ELEMENT(INDXl) TO PRINT-FIELD.

ELEMENT(INDXl) in the example above refers to the fourth element of the table. The
MOVE statement moves the contents of the fourth occurrence of ELEMENT to a field called
PRINT-FIELD.

Relative Indexing: Relative indexing uses an arithmetic expression to compute the
location of a table element. Using the sample TABLE-A defined in the example above, the
same results could be achieved with relative indexing. If INDXl has a value of 1, the fourth
element of TABLE-A can be moved to PRINT-FIELD with this statement:

MOVE ELEMENT(INDXl + 3) TO PRINT-FIELD.

In relative indexing, index-name is followed by a space, followed by one of the operators +
or -, followed by another space, followed by an unsigned integer numeric literal or arithmetic
expression, all delimited by the balanced pair of separators left parenthesis and right
parenthesis.
The occurrence number resulting from relative indexing is determined by incrementing or
decrementing the index by the value of the literal or arithmetic expression.

Multidimensional Tables
When a table has more than one dimension, the data-name of the desired item is followed by
a list of subscripts, one for each OCCURS clause to which the item is subordinate.
In such a list, the first subscript applies to the first OCCURS clause to which the item is
subordinate. The second subscript applies to the next most encompassing level. The third
subscript applies to the next lower level OCCURS clause being accessed, and so on.
The following example presents DATA DIVISION entries for a multidimensional table,
TABLE-PLUS.

4-48 First Edition

Elements of COBOL85

01 TABLE-PLUS.
05 TYPE OCCURS 10 TIMES.

1 0 PA R T- N O P I C X (4) .
10 COLOR PIC X OCCURS 10 TIMES.
10 CONTROL OCCURS 7 TIMES.

1 5 C l P I C X .
15 C2 PIC XX OCCURS 4 TIMES.

The statement

MOVE C2(8, 6, 4) TO TEMP.

moves the contents of the fourth occurrence of the field C2, in the sixth occurrence of the
field CONTROL, in the eighth occurrence of the field TYPE, to a field called TEMP.

Similarly, the statement

MOVE C2(10, 7, 4) TO TEMP.

moves the contents of the last occurrence of the field C2 to the field labeled TEMP.

Subscripting Qualified data-names
To subscript a qualified data-name, code the subscript at the end of the fully qualified data-
name.
For example, suppose a program contains the following data items in WORKING-
STORAGE:

01 RECORD-1.
05 GROUP-1.

10 ELEMENT-1 OCCURS 10 TIMES PIC X(4).
1 0 E L E M E N T - 2 P I C X (4) .

01 RECORD-2.
05 GROUP-1.

10 ELEMENT-1 OCCURS 10 TIMES PIC X(4) .
1 0 E L E M E N T - 2 P I C X (4) .

To refer to the fifth occurrence of ELEMENT-1 in GROUP-1 of RECORD-1 in the
PROCEDURE DIVISION, code

ELEMENT-1 OF GROUP-1 OF RECORD-l(5)

not

ELEMENT-1(5) OF GROUP-1 OF RECORD-1

First Edition 4-49

COBOL85 Reference Guide

Table Handling Example

IDENTIFICATION DIVISION.
P R O G R A M - I D . B U D G E T .
A U T H O R . P R I M A T E 1 .
I N S T A L L A T I O N . P R I M E .
DATE-COMPILED.

* *
REMARKS. THE PROGRAM READS A FILE CONTAINING BUDGET LIMITS AND

EXPENDITURES. BUDGET LIMIT RECORDS HAVE A "B" CODE IN THE
FIRST POSITION; EXPENDITURE RECORDS HAVE AN "E" CODE.
IF ANY BUDGET LIMIT ENTRIES ARE MISSING, ZERO AMOUNTS ARE
ASSUMED. THE EXPENDITURE RECORDS MUST BE IN ORDER BY
CATEGORY WITHIN ACCOUNT.

THE PROGRAM BUILDS A TABLE CONTAINING BUDGET LIMITS AND
EXPENDITURES FOR EACH BUDGET CATEGORY WITHIN EACH ACCOUNT.

THE PROGRAM PRODUCES ONE REPORT. FOR EACH ACCOUNT NUMBER,
IT SEARCHES ALL CATEGORIES, COMPARES EXPENDITURES
WITH BUDGETED LIMITS, AND PRINTS ANY CATEGORIES THAT ARE
OVER THE BUDGETED LIMIT.

NOTE: THE PROGRAM DOES NOT VALIDATE INPUT. IT ASSUMES THAT
AN INPUT DATA ITEM THAT IS TO BE USED AS AN INDEX IS
WITHIN THE VALID RANGE. IT ALSO ASSUMES THAT NUMERIC
DATA ITEMS CONTAIN ONLY VALID NUMERICS.

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INPUT-FILE ASSIGN TO PRIMOS.
SELECT PRINT-FILE ASSIGN TO PRINTER.

* *
DATA DIVISION.
FILE SECTION.
FD INPUT-FILE COMPRESSED,

VALUE OF FILE-ID IS 'BUDGET.DATA'.
0 1 E N T R Y P I C X (8 0) .

*
FD PRINT-FILE,

LABEL RECORDS ARE OMITTED.
0 1 P R I N T - L I N E P I C X (1 3 2) .

*
WORKING-STORAGE SECTION.
7 7 A C C T - S A V E - W S P I C X (3) .
77 EXCESS-COUNT-WS PIC S999 COMP-3 VALUE 0.
7 7 N O - M O R E - I N P U T P I C X V A L U E ' N ' .

* *
*TWO-DIMENSIONAL TABLE FOR ACCTS AND CATEGORIES, INDEXED. *
* *

4-50 First Edition

Elements of COBOL85

01 BUDGET-TABLE.
05 ACCOUNTS OCCURS 8 TIMES INDEXED BY ACCT-IDX.

10 CATEGORIES OCCURS 10 TIMES INDEXED BY CAT-IDX.
15 BUDGETED-AMT PIC 9(5)V99.
1 5 A M T- S P E N T P I C 9 (1 0) V 9 9 .

* *
* ONE-DIMENSIONAL TABLE FOR ACCOUNT NAMES IN EXCESS-LINE *
* *
01 ACCOUNT-NAMES.

PIC X(03) VALUE 'ABC.
PIC X(03) VALUE 'DEF'.
PIC X(03) VALUE 'GHI'.

05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
ACCOUNT-NAMES-R
05 ACCOUNT-NAME

PIC X(03) VALUE ' JKL' .
MNO' .PIC X(03) VALUE

PIC X(03) VALUE 'PQR'.
PIC X(03) VALUE 'STU'.
PIC X(03) VALUE 'VWX' .

01 ACCOUNT-NAMES-R REDEFINES ACCOUNT-NAMES.
OCCURS 8 TIMES PIC X(03).

* *
* ONE-DIMENSIONAL TABLE FOR CATEGORY NAMES IN EXCESS-LINE *
* *

01 CATEGORY-NAMES.
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER
05 FILLER

01 CATEGORY-NAMES-R
05 CATEGORY-NAME

PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)
PIC X(10)

REDEFINES
OCCURS 10 T

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

AUTO
CLOTHING
FOOD
INSURANCE
MAINTENANC
MEDICAL
MORTGAGE
RECREATION
UTILITIES
MISC

CATEGORY-NAMES.
IMES PIC X(10).

* *
* W O R K L I N E S *
* *
•LIMIT-LINE IS BUDGET LIMIT:
01 LIMIT-LINE.

0 5 C O D E - L T P I C X .
0 5 A C C T - L T P I C X (3) .
0 5 C A T - L T P I C 9 9 .
05 DATE-LT.

1 0 M O N T H - L T P I C 9 9 .
1 0 D A Y - Y R P I C 9 (4) .

0 5 A M T - L T P I C 9 (5) V 9 9 .
0 5 F I L L E R P I C X (6 1) .

*EXPENSE-LINE IS EXPENDITURES:
0 1 E X P E N S E - L I N E R E D E F I N E S L I M I T - L I N E .

0 5 C O D E - E X P I C X .
0 5 A C C T - E X P I C X (3) .
0 5 C A T - E X P I C 9 9 .
05 DATE-EX.

1 0 M O N T H - E X P I C 9 9 .

First Edition 4-51

COBOL85 Reference Guide

10 DAY-EX
10 YEAR-EX

05 AMOUNT-EX
05 FILLER

PIC 99.
PIC 99.
PIC 9(5)V99.
PIC X(61) .

01 EXCESS-WORK.
05 CATEGORY
05 AMOUNT
05 BUDGET-LIMIT
05 OVER
05 PERCENT

PIC X(10) VALUE SPACES.
PIC 9(10)V99 VALUE 0 COMP-3.
PIC 9(10)V99 VALUE 0 COMP-3.
PIC 9(10)V99 VALUE 0 COMP-3.
PIC 999V99 VALUE 0 COMP-3.

* *
* P R I N T
* *
01 HEADING1.

05 CTL1
05 FILLER
05 ACCT-PRINT
05 FILLER

VALUE '

* *
L I N E S *

* *

PIC X VALUE '1 ' .
PIC X(ll) VALUE 'ACCOUNT '.
PIC X(3) VALUE SPACES.
PIC X(115)

CATEGORIES EXCEEDING BUDGET

01 HEADING2.
05 CTL2
05 FILLER

VALUE 'CATEGORY
' OVER

01 EXCESS-PRINT.
05 CTRL-EXC
05 CATEGORY
05 AMOUNT
05 FILLER
05 BUDGET-LIMIT
05 FILLER
05 OVER
MESSAGE-LINE

PIC X VALUE '0 ' .
PIC X(71)

YTDSPENT BDGTD AMT

01

AMOUNT

PIC X VALUE ' '.
PIC X(10) VALUE SPACES.
PIC Z(9)9.99.
PIC X VALUE SPACES.
PIC Z (9)9.99.
PIC XX VALUE SPACES.
PIC Z (9)9.99.
PIC X(49)

VALUE '1NO CATEGORIES HAVE AN AMOUNT THAT EXCEEDS BUDGET'.
* *
*
PROCEDURE DIVISION.

*
DECLARATIVES.

INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON INPUT-FILE.
FIRST-PARAGRAPH.

DISPLAY '*** 1-0 ERROR ON INPUT FILE: ***'.
STOP RUN.

END DECLARATIVES.

0000-MAINLINE.
PERFORM 1000-INITIALIZATION.
PERFORM 2000-PROCESS-LIMITS UNTIL CODE-LT = 'E'.
MOVE ACCT-EX TO ACCT-SAVE-WS.
PERFORM 3000-PROCESS-EXPENSES UNTIL NO-MORE-INPUT = 'Y'.
CLOSE PRINT-FILE, INPUT-FILE.
STOP RUN.

4-52 First Edition

Elements of COBOL85

1000-INITIALIZATION.
PERFORM 1100-ZERO-TABLES

VARYING ACCT-IDX FROM 1 BY 1
UNTIL ACCT-IDX > 8.

PERFORM 12 00-OPEN-FILES.
*
1100-ZERO-TABLES.

PERFORM 1110-ZERO-TABLES
VARYING CAT-IDX FROM 1 BY 1
UNTIL CAT-IDX > 10.

*
1110-ZERO-TABLES.

MOVE ZEROS TO BUDGETED-AMT(ACCT-IDX, CAT-IDX).
MOVE ZEROS TO AMT-SPENT(ACCT-IDX, CAT-IDX).

*
1200-OPEN-FILES.

OPEN INPUT INPUT-FILE,
OUTPUT PRINT-FILE.

MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING PAGE.
READ INPUT-FILE INTO LIMIT-LINE,

AT END DISPLAY 'EMPTY FILE',
CLOSE INPUT-FILE, PRINT-FILE
STOP RUN.

*
2000-PROCESS-LIMITS.

* *
* READ BUDGET LIMITS INTO TABLE. USE ACCT-LT AND *
* CAT-LT ON LIMIT-RECORD TO SET TABLE INDEXES: *
* *

SET CAT-IDX TO CAT-LT.
SET ACCT-IDX TO 1.
SEARCH ACCOUNT-NAME

VARYING ACCT-IDX
WHEN ACCT-LT = ACCOUNT-NAME (ACCT-IDX)

NEXT SENTENCE.
MOVE AMT-LT TO BUDGETED-AMT(ACCT-IDX, CAT-IDX).
READ INPUT-FILE INTO LIMIT-LINE,

AT END MOVE 'E' TO CODE-LT,
MOVE 'Y' TO NO-MORE-INPUT,
DISPLAY 'NO EXPENDITURES'.

*
3000-PROCESS-EXPENSES.

IF ACCT-EX NOT EQUAL ACCT-SAVE-WS,
PERFORM 3200-NEXT-ACCT.

PERFORM 3100-MAKE-TABLES.
READ INPUT-FILE INTO EXPENSE-LINE,

AT END MOVE 'Y' TO NO-MORE-INPUT,
PERFORM 32 00-NEXT-ACCT.

*
3100-MAKE-TABLES.

* *
* SET ACCT-IDX, CAT-IDX FOR TABLE, ADD TO THOSE TOTALS. *
* *

SET CAT-IDX TO CAT-EX.
SET ACCT-IDX TO 1.

First Edition 4-53

COBOL85 Reference Guide

SEARCH ACCOUNT-NAME
VARYING ACCT-IDX

WHEN ACCT-EX = ACCOUNT-NAME (ACCT-IDX)
NEXT SENTENCE.

ADD AMOUNT-EX TO AMT-SPENT(ACCT-IDX, CAT-IDX).
*
3200-NEXT-ACCT.

MOVE ACCT-SAVE-WS TO ACCT-PRINT.
MOVE ACCT-EX TO ACCT-SAVE-WS.
MOVE ZEROS TO EXCESS-COUNT-WS.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE FROM HEADING1 AFTER ADVANCING 4.
WRITE PRINT-LINE FROM HEADING2 AFTER ADVANCING 2.
PERFORM 3210-SEARCH-FOR-EXCESS

VARYING CAT-IDX FROM 1 BY 1
UNTIL CAT-IDX > 10.

IF EXCESS-COUNT-WS = 0
MOVE SPACES TO PRINT-LINE
WRITE PRINT-LINE FROM MESSAGE-LINE.

MOVE 0 TO EXCESS-COUNT-WS.
*
3210-SEARCH-FOR-EXCESS.

* *
* LINEAR SEARCH OF ONE ACCOUNT BY CATEGORIES: *
* *

IF AMT-SPENT(ACCT-IDX, CAT-IDX) > BUDGETED-AMT
(ACCT-IDX, CAT-IDX),

ADD 1 TO EXCESS-COUNT-WS,
PERFORM 3211-PRINT-EXCESS.

*
3211-PRINT-EXCESS.

MOVE CATEGORY-NAME(CAT-IDX) TO CATEGORY OF EXCESS-WORK.
MOVE AMT-SPENT(ACCT-IDX, CAT-IDX) TO AMOUNT OF EXCESS-WORK.
MOVE BUDGETED-AMT(ACCT-IDX, CAT-IDX) TO

BUDGET-LIMIT OF EXCESS-WORK.
COMPUTE OVER OF EXCESS-WORK = AMT-SPENT(ACCT-IDX, CAT-IDX)

- B U D G E T E D - A M T (A C C T - I D X , C A T - I D X) . / - * ^
MOVE CORR EXCESS-WORK TO EXCESS-PRINT.
MOVE SPACES TO PRINT-LINE.
WRITE PRINT-LINE FROM EXCESS-PRINT.

Compile, link, and execute this program, stored as BUDGET.TABLE.COBOL85, with the
following dialog. Sample input and output is given below.

OK, C0B0L85 BUDGET. TABLE -L
[C0B0L85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: BUDGET.TABLE.COBOL85]

OK, BIND -LOAD BUDGET. TABLE -LI COBOL85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE

OK, RESUME BUDGET. TABLE
OK,

4-54 First Edition

Input File (BUDGET.DATA):

OK, SLIST
BABC010132
BABC020232
BABC030332
BABC040432
BABC050532
BDEF080532
BGHI080332
BGHI090432
EABC031025
EABC031025
EABC051021
EABC021004
EABC031004
EABC031004
EABC011001
EABC041001
EABC030802
EABC030730
EABC030725
EDEF080720
EGHI090615
EGHI080614
OK,

BUDGET.DATA
780300200
780346200
780020000
780000500
780200060
780200000
780098300
780090000
78*9998930
780000116
780000984
780000386
780008512
780004000
780030000
780001000
780008651
780000450
780008015
780000430
780025600
780003050

Output File (PRINT-FILE):
ACCOUNT ABC

Elements of COBOL85

CATEGORIES EXCEEDING BUDGET

CATEGORY
FOOD
INSURANCE

YTDSPENT
100286.74

10.00

BDGTD AMT
200.00

5.00

AMOUNTOVER
100086.74

5.00

ACCOUNT DEF CATEGORIES EXCEEDING BUDGET

CATEGORY YTDSPENT BDGTD AMT AMOUNTOVER
NO CATEGORIES HAVE AN AMOUNT THAT EXCEEDS BUDGET

ACCOUNT GHI CATEGORIES EXCEEDING BUDGET

CATEGORY YTDSPENT BDGTD AMT AMOUNTOVER
NO CATEGORIES HAVE AN AMOUNT THAT EXCEEDS BUDGET

r
r First Edition 4-55

COBOL85 Reference Guide

Exception Handling
During the execution of any input or output operation, unusual conditions may arise that
preclude normal completion of the operation. COBOL85 communicates these conditions to
the object program in the following ways:

• Exception declaratives
• Optional phrases associated with the imperative statement causing the condition
• 1-0 status

Exception Declaratives
If you specify in the declaratives section a USE procedure for a file, the procedure is
executed whenever an input or output condition arises that results in an unsuccessful input-
output operation. However, this exception declarative is not executed for the invalid key
condition if you specify the INVALID KEY phrase, nor for the AT END condition if you
specify the AT END phrase.

Optional Phrases
You can specify the INVALID KEY phrase in the DELETE, READ, REWRITE, START,
and WRITE statements. Some of the conditions that give rise to an invalid key condition are

• A requested key does not exist in the file (DELETE, READ, and START statements).
• A key is already in a file, and duplicates are not allowed (WRITE statement).
• A key does not exist in the file, or it is not the last key read (REWRITE statement).

If the invalid key condition occurs during the execution of a statement for which you specify
the INVALID KEY phrase, the statement identified by that INVALID KEY phrase is
executed.
You can specify the AT END phrase in a READ statement. The AT END condition occurs in
a sequentially accessed file when

• No next logical record exists in the file.
• The number of significant digits in the relative record number is larger than the size of

the relative key data item.
• An optional file is unavailable.
• A READ statement is attempted, and the AT END condition already exists.

If the AT END condition occurs during the execution of a statement for which you specify
the AT END phrase, the statement identified by that AT END phrase is executed.

1-0 Status
The 1-0 status is a two-byte conceptual entity whose value is set by C0B0L85 to indicate the
status of an input-output operation. When you specify a two-character file status field in the

4-56 First Edition

Elements of COBOL85

WORKING-STORAGE SECTION or the LINKAGE SECTION, and you reference that field
in the FILE STATUS clause in the file-control-entry for a particular file, the file control
system moves a value into the file status field following the execution of every OPEN,
CLOSE, READ, REWRITE, WRITE, START, or DELETE statement that references that
file. This value indicates the execution status of the statement. The following section
discusses all COBOL85 file status codes.

File Status Codes
The first digit in each status code indicates the following categories of error:

Digit Error Category
Ox Successful Completion: The input-output statement was executed successfully. Addi

tional information may also be provided. Control returns to the statement following the
input-output statement or to the imperative statement following any NOT AT END or
NOT INVALID KEY phrase.

lx At End: A sequential READ statement was executed unsuccessfully, as a result of an
AT END condition. Control returns to the imperative statement following the AT END
phrase, if specified. Otherwise, the applicable USE procedure is invoked.

2x Invalid Key: The input-output statement was unsuccessfully executed as a result of an
invalid key condition. Control returns to the imperative statement following the INVALID
KEY phrase, if you specify one. Otherwise, the applicable USE procedure is invoked.

3x Permanent Error: The input-output statement was unsuccessfully executed as a result
of a permanent error condition that precluded further processing of the file. Any speci
fied USE procedures are executed, and the program terminates.

4x Logic Error: The input-output statement was unsuccessfully executed as a result of per
forming an improper sequence of input-output operations on the file, or as a result of
violating a user-defined limit. Any specified USE procedures are executed, and the pro
gram terminates.

8x Prime Specific (Permanent): The input-output statement was unsuccessfully executed
as a result of a permanent error condition that is specified by the implementor. Any
specified USE procedures are executed, and the program terminates.

9x Prime Specific (Recoverable): The input-output statement was unsuccessfully executed
as a result of a condition that is specified by the implementor. Control returns to the im
perative statement following the INVALID KEY phrase, if you specify one. Otherwise,
the applicable USE procedure is invoked. If no applicable USE procedure is present, the
program terminates.

If a critical error (3x, 4x, 8x) occurs, further 1-0 operations are not permitted on the file
during the execution of the USE procedure. 1-0 operations on other files may be possible, as
long as such operations do not create additional errors.

Caution

Performing 1-0 operations during declaratives processing is not recommended. The cases
listed below can be handled at runtime, but there may be other similar situations that
produce unexpected results. Use care to avoid such situations when coding USE procedures.

First Edition 4-57

COBOL85 Reference Guide

The following operations cause the program to terminate immediately without completing the
USE procedure:

• Any 1-0 operation on the same file
• Any 1-0 operation on another file that results in a fatal error
• Any 1-0 operation on another file that results in a non-fatal error (lx, 2x) and invokes

the USE procedure currently being executed

The following sections list all COBOL85 1-0 status codes. Deviations from the ANSI
standard, whether restrictions or extensions, are documented for the applicable status code.
Unless otherwise noted, all status codes relating to indexed and relative 1-0 apply to
MIDASPLUS and PRISAM files, and all status codes relating to sequential 1-0 apply to
PRISAM, PRIMOS, and magnetic tape files.

Status Code 00
Successful completion for all input-output operations.

Status Code 02 (Indexed)
The input-output statement is successfully executed, but a duplicate is detected.

WRITE or REWRITE: When a WRITE or REWRITE statement creates a duplicate
secondary key, status code 02 is returned.

READ Secondary Key of Reference: When the key value for the current key of
reference is equal to the value of the same key in the next record within the current key of
reference, status code 02 is returned. The last duplicate in the chain returns status code 00.

Note
This status code applies only to indexed files that contain secondary indexes.

Status Code 04 (Sequential, Relative, Indexed)
A READ statement is successfully executed, but the length of the record being processed does
not conform to the minimum or to the maximum record sizes specified for the file. This applies
to variable-length records only. The buffer area contains undefined positions for short records or
the record has been truncated for long records. This is an informational status code only.

Status Code 05 (Sequential, Indexed, Relative)
An OPEN statement is successfully executed, but the referenced OPTIONAL file is not
present at the time the OPEN statement is executed.

• If the open mode is 1-0 or EXTEND, the file is created.
• If the open mode is INPUT, the first sequential READ statement returns status code 10

Gogical end of file). The first START or random READ returns status code 23 (not
found).

* >

~

4-58 First Edition

Elements of COBOL85

• If the open mode is OUTPUT, status code 05 is not applicable.

Prime Restriction: OPTIONAL files assigned to PRISAM that are unavailable and
opened in 1-0 or EXTEND mode are not created.

Status Code 07 (Sequential)
If an OPEN or CLOSE statement is specified with optional phrases relating to reel/unit
media, and the referenced file is on a nonreel/unit medium, status code 07 is returned.
The optional phrases applicable for a CLOSE statement are the NO REWIND and REEL/
UNIT phrases. For an OPEN statement, the applicable optional phrases are the NO REWIND
and REVERSED phrases.

Note
A CLOSE statement with the REELAJNIT phrase for a non-reel/unit file causes the file to
remain in the open mode.

Status Code 10 (Sequential, Relative, Indexed)
The AT END condition exists because

• A sequential READ statement is attempted, and no next logical record exists in the file
because the end of file has been reached.

• A sequential READ statement is attempted for the first time on an optional input file
that is not present.

Status Code 14 (Relative)
A sequential READ statement is attempted for a relative file and the number of significant
digits in the relative record number is larger than the size of the relative key data item
described for the file. Therefore, an apparent logical end-of-file condition exists.

Status Code 21 (Indexed)
A sequence error exists for an indexed file because

• A READ statement is required prior to a REWRITE (see Status Code 43), and the
primary key value is changed by the program between the successful execution of a
READ and the execution of the next REWRITE statement for that file.

• For a sequentially accessed file, the successive primary record key values are not in
asrp.ndinp order dnrin? a WRITE onp.ratinnascending order during a WRITE operation

Status Code 22 (Relative, Indexed)
An attempt is made to

• WRITE a record that would create a duplicate primary key in an indexed or relative file.

First Edition 4-59

COBOL85 Reference Guide

• A sequential WRITE statement is attempted for a relative file and the number of
significant digits in the relative record number is larger than the size of the relative key
data item described for the file. The relative key data item is undefined.

Status Code 30 (Sequential, Relative, Indexed)
A permanent error exists because

• For indexed and relative files, disk full or quota exceeded is encountered during a
WRITE operation.

• For all file types, an unrecoverable error is encountered, and no further information is
available. This status code applies to all verbs for all file types. Status code 30 reports
any fatal error returned from PRIMOS (that is, insufficient access rights, file in use,
illegal name, and so on).

Status Code 34 (Sequential)
An attempt is made to write beyond the externally defined boundaries of a sequential file
(that is, quota exceeded or disk full).

• WRITE or REWRITE a record that would create a duplicate alternate record key in an
indexed file for which you do not specify the DUPLICATES phrase.

Prime Restriction: For PRISAM files, if you do not specify the DUPLICATES phrase in
the program, and the DDL specification allows duplicates, status code 22 is returned, but
during sequential access of the file with a secondary key of reference, the current file
position is undefined.

Status Code 23 (Relative, Indexed)
An invalid key condition exists because

• An attempt is made to randomly access a record that does not exist in the file.
• A START or random READ statement is attempted on an optional input file that is not -^^

present.

Status Code 24 (Relative)
A boundary violation exists because

• An attempt is made to write beyond the externally defined boundaries of a relative file.
This boundary is the maximum number of records allocated during CREATK or FAU
invocation. For MIDASPLUS files this maximum can be increased by using the DATA
function of CREATK.

Note
MIDASPLUS allocates space in pages, not in records. Therefore, a boundary violation
(status code 24) only occurs when the relative record number times the record size exceeds
the allocated space in pages. The space allocated meets or exceeds the amount required for
the number of records requested.

4-60 First Edition

Elements of COBOL85

Status Code 35 (Sequential, Indexed, Relative)
A permanent error exists because an OPEN statement with the INPUT, l-O, or EXTEND
phrase is attempted on a nonoptional file that is not present.

Status Code 37 (Sequential, Indexed, Relative)
A permanent error exists because an OPEN statement is attempted on a file that cannot
support the open mode specified in the OPEN statement. Although status code 37 is used for
runtime error checking, many of the associated problems can be detected during compilation.
All the possible violations that reflect file type/mode conflicts are

• The EXTEND phrase is specified, but the file cannot support the write or positioning
operations required for the file. Specifically, this violation applies to

o Files assigned to MT9, TERMINAL, or OFFLINE-PRINT. The compiler generates
a fatal diagnostic.

o Files assigned to PFMS that are redirected to tape ($MT0, and so on) through the
use of the -FILE_ASSIGN option. The OPEN statement returns status code 37.

o A WRITE statement with the ADVANCING clause on a file assigned to PFMS.
The WRITE statement returns status code 37.

o An OPEN statement for an unavailable OPTIONAL file assigned to PRISAM.
OPEN returns status code 37. COBOL85 does not create the file.

o An OPEN statement for an unavailable OPTIONAL file assigned to MIDASPLUS
that has nonalphanumeric keys. OPEN returns status code 37. COBOL85 does not
create the file.

o Nonoptional indexed or relative files. The compiler generates a fatal diagnostic.
o An OPEN statement for an optional indexed or relative file that is present but that

contains data. The compiler generates a warning, and the OPEN statement returns
status code 37.

• The 1-0 phrase is specified, but the file cannot support the input and output operations
that are permitted for a sequential file when opened in the 1-0 mode. Specifically, this
violation applies to

o A REWRITE statement for a compressed file. The compiler generates a fatal
diagnostic for files assigned to PRINTER or files with the COMPRESSED clause
in the file-description-entry.
Also, if the first WRITE statement for a file assigned to PFMS has an
ADVANCING clause, the file implicitly acquires the compressed attribute. At
runtime, any REWRITE attempts return status code 37. (The ADVANCING clause
is allowed only on files assigned to PFMS or PRINTER.)

o Files assigned to MT9 or OFFLINE-PRINT. The compiler generates a fatal
diagnostic.

o Files assigned to PFMS that are redirected to tape ($MT0, and so on) through the
use of the -FILE_ASSIGN option. The OPEN statement returns status code 37.

o A REWRITE statement for a file assigned to TERMINAL. The REWRITE
statement returns status code 37.

First Edition 4-61

COBOL85 Reference Guide

o An OPEN statement for an unavailable OPTIONAL file assigned to PRISAM.
OPEN returns status code 37. COBOL85 does not create the file.

o An OPEN statement for an unavailable OPTIONAL file assigned to MIDASPLUS
that has nonalphanumeric keys. OPEN returns status code 37. COBOL85 does not
create the file.

The INPUT phrase is specified, but the file cannot support read operations. Specifically,
this violation applies to files assigned to PRINTER and OFFLINE-PRINT. The
compiler generates a fatal diagnostic.
The OUTPUT phrase is specified, but the file cannot support the implicit truncation or
creation capabilities required. Specifically, this violation applies to

o MIDASPLUS indexed and relative files, and PRISAM sequential, indexed, and
relative files that contain data at the time of the OPEN statement. Such files cannot
be truncated and, therefore, are not opened. Status code 37 is returned.

o Any file that is assigned to PRISAM and is not present at the time of the OPEN
statement. COBOL85 does not create the file. Status code 37 is returned.

o Any file that is assigned to MIDASPLUS or PFMS has nonalphanumeric key
definitions, and is not present at the time of the OPEN statement. COBOL85 does
not create the file. Status code 37 is returned.

Status Code 39 (Sequential, Indexed, Relative)
The OPEN statement is unsuccessful because the fixed file attributes conflict with the
attributes specified for the file in the program.

Specifically, this status code refers to file attributes such as the organization, minimum and
maximum logical record sizes, record type (fixed versus variable), and for tape files, the
block size. For indexed files, additional file attributes include the primary record key and
alternate record keys.
This status code can also indicate the following invalid attributes:

• Invalid magnetic tape specifications during file assignment (drive-number, label-type,
file-id, volume-id)

• Invalid assign device during tape file assignment
• RBF file not a valid PRISAM file (DBMS/archived)
• Variable-length records not supported for MIDASPLUS relative files
• Maximum tape block size exceeds 12288 characters
• Maximum tape record size for variable-length records exceeds 9995 characters
• The data management product used to create the file

For magnetic tape files, no attribute checking occurs for unlabeled tape.
For variable-length files, COBOL85 compares the minimum and maximum record sizes in
the physical file with the minimum and maximum sizes specified in the RECORD IS
VARYING clause of the associated file. These sizes must be equal. If you do not specify the

" >

-

4-62 First Edition

Elements of COBOL85

RECORD IS VARYING clause, COBOL85 uses the sizes of the smallest and largest record-
description-entries for this comparison. For more information see the section, Specifying
Variable-length Records, earlier in this chapter. See also the RECORD clause in Chapter 7.

Status Code 41 (Sequential, Relative, Indexed)
An OPEN statement is attempted for a file already open.

Status Code 42 (Sequential, Relative, Indexed)
A CLOSE statement is attempted for a file that is not open.

Status Code 43 (Sequential, Relative, Indexed)

Sequential: The last input-output statement executed for the file prior to the execution of
a REWRITE statement was not a successfully executed READ statement.

Relative: In the sequential access mode, the last input-output statement executed for the
file prior to the execution of a DELETE or REWRITE statement was not a successfully
executed READ statement.

Indexed: In the sequential access mode, the last input-output statement executed for the file
prior to the execution of a DELETE or REWRITE statement was not a successfully executed
READ statement. For dynamic or random mode, see the REWRITE statement in Chapter 10
for additional instances when the last input-output statement executed for the file prior to the
REWRITE statement must be a successfully executed READ statement.

Status Code 44 (Sequential, Relative, Indexed)
A boundary violation exists because

• An attempt is made to WRITE a record that is larger than the largest or smaller than the
smallest record allowed for the associated variable-length file.

• An attempt is made to REWRITE a variable-length record, and the record is not the
same size as the record being replaced.

Status Code 46 (Sequential, Relative, Indexed)
A sequential READ statement is attempted on a file open in INPUT or 1-0 mode, and no
valid next record is established because

• The preceding START statement for an indexed or relative file was unsuccessful.
• The preceding READ statement was unsuccessful, but did not cause an AT END

condition.
• The preceding READ statement caused an AT END condition.

First Edition 4-63

COBOL85 Reference Guide

Status Code 47 (Sequential, Relative, Indexed)
The execution of a READ or START statement is attempted on a file not open in the INPUT
or 1-0 mode.

Status Code 48 (Sequential, Relative, Indexed)

Sequential: The execution of a WRITE statement is attempted on a file not open in
OUTPUT or EXTEND mode.

Relative/Indexed: In sequential access mode, the execution of a WRITE statement is
attempted on a file not open in OUTPUT or EXTEND mode. In dynamic or random mode,
the execution of a WRITE statement is attempted on a file not open in OUTPUT or 1-0
mode.

Status Code 49 (Sequential, Relative, Indexed)
The execution of a DELETE or REWRITE statement is attempted on a file not open in the
1-0 mode.

Status Code 82
Prime Extension: Specifies a fatal tape error when end of tape (EOT) occurs on unlabeled
tape during a READ or WRITE operation.

Status Code 90
A lock is requested on a MIDASPLUS record that is already locked. (See MIDASPLUS error
code 10.)

Status Code 93
A FORMS validation error on a READ statement.

Status Code 94
Concurrency error. Another user may have deleted an active MIDASPLUS record. (See
MIDASPLUS error code 13.)

Status Code 97
Concurrency error during a PRISAM operation. (See PRISAM error codes ER$ABT,
ER$TIM, and ER$TAB.)

Status Code 98
An input-output operation is unsuccessful due to an error that may be recoverable, such as a
badspot on a magnetic tape file.

" >

'

'

4-64 First Edition

Elements of COBOL85

Status Code 99
MIDASPLUS or PRISAM unexpected system error. This is a critical error. The program
terminates.

First Edition 4-65

The IDENTIFICATION DIVISION

This chapter discusses the first of the four major divisions of the COBOL85 program, the
IDENTIFICATION DIVISION. The chapter discusses the format of the IDENTIFICATION
DIVISION and concludes with an example.

IDENTIFICATION DIVISION
You must include the IDENTIFICATION DIVISION as the first division in the COBOL85
program. This division identifies the program. You can include additional user information,
such as the date the program was written or the program author, in the appropriate paragraph
in the format shown below. You can precede the IDENTIFICATION DIVISION by
comment lines denoted by either an asterisk or a slash in column seven.

Format

r f I D E N T I F I C A T I O N D I V I S I O N . " 1
1 I D D I V I S I O N . J

PROGRAM-ID. program-name.

[AUTHOR, [comment-entry] • • •]

[INSTALLATION, [comment-entry] • • •]

[DATE-WRITTEN, [comment-entry] ■ • •]

[DATE-COMPILED, [comment-entry] • • •]

[SECURITY, [comment-entry] • ■ •]

[REMARKS, [comment-entry] • • ■]

r
r First Edition 5-1

COBOL85 Reference Guide

Syntax Rules

1. The IDENTIFICATION DIVISION must begin with the reserved words
IDENTIFICATION DIVISION or ID DIVISION followed by a period and a space.
Prime Extension: You can use ID instead of IDENTIFICATION.

2. The PROGRAM-ID paragraph is required and must immediately follow the division
header. The program-name is the name of the entry-point or object module, and is the
name by which you reference this program in a CALL statement. If you omit the
program-name, the compiler uses MAIN by default.

3. The program-name follows the general rules for word formation listed in Chapter 4. It
may be any alphanumeric string.

Note

If you use SEG as the loader, SEG retains only the first 8 characters of the program-name.
Because they define the entry point name, these characters must be unique in any one
runfile.

4. All remaining paragraphs are optional. A paragraph-header (a reserved word) identifies
the type of information contained in each paragraph.
Prime Extension: Optional paragraphs can appear in any order.

5. A comment-entry can be any combination of Prime characters. The continuation of a
comment-entry by a hyphen in column 7 is not permitted; however, the comment-entry
can appear on one or more lines. Limit to Area B any comment lines after the header.

6. DATE-COMPILED writes the date and time of compilation to the listing file on the
same line. For example,

DATE-COMPILED. 870814.14 :04 :28 .

7. You can use PROGRAM-ID and DATE-COMPILED in the PROCEDURE DIVISION.
For example,

DISPLAY PROGRAM-ID.

MOVE DATE-COMPILED TO PIC-X-15.

In all references to PROGRAM-ID in the PROCEDURE DIVISION, the compiler
substitutes the program name. In all references to DATE-COMPILED in the
PROCEDURE DIVISION, the compiler substitutes the compilation date and time. The
compiler treats both substituted items as nonnumeric literals. DATE-COMPILED is a
15-character field. Its value is in the format

YYMMDD.HH:MM:SS

8. Prime Extension: The REMARKS paragraph is a Prime extension.

5-2 First Edition

The IDENTIFICATION DIVISION

IDENTIFICATION DIVISION Example
This example forms one program with the examples at the end of Chapters 6, 7, and 8.

IDENTIFICATION DIVISION.
PROGRAM-ID. DISBURSE.
A U T H O R . M A T T .
INSTALLATION. PRIME.
DATE-WRITTEN. AUGUST, 14, 1988.
DATE-COMPILED.

* *
REMARKS. THIS PROGRAM PRODUCES A MONTHLY CASH DISBURSEMENTS

JOURNAL: A PRINTED DETAIL LIST AND TOTALS BY DEPARTMENTS
WITH GRAND-TOTAL (CROSS-TOTAL) BALANCED AGAINST A JOB TOTAL.

*
USE DETAIL-LINES WITH

COL. 1-3 CHECK NO. ,
COL. 4-9 MMDDYY,
COL. 13-32 VENDOR,
COL. 33-35 DEPT. OR ACCT. NO.,
COL. 36-42 AMOUNT.

TO WRITE TAPE RECORD, ENTER YES FOR TAPE REQUEST.
*

THE PROGRAM CHECKS FOR INPUT ERRORS OF INVALID ACCOUNT
NUMBER, INVALID DATE, INVALID NUMERIC FIELDS. IT DOES NOT
CHECK FOR SEQUENCE ERRORS IN DATE OR CHECK NUMBER, OR FOR
DUPLICATE ENTRIES. THE PROGRAM ASSUMES AN UNSORTED DATA FILE.

* *

r

r First Edition 5-3

The ENVIRONMENT DIVISION

This chapter discusses the second of the four major divisions of the COBOL85 program, the
ENVIRONMENT DIVISION. The chapter describes the CONFIGURATION SECTION and
its paragraphs: SOURCE-COMPUTER, OBJECT-COMPUTER, and SPECIAL-NAMES. It
also describes the INPUT-OUTPUT SECTION and its paragraphs: FILE-CONTROL and
I-O-CONTROL. The chapter concludes with an example of the ENVIRONMENT
DIVISION.

ENVIRONMENT DIVISION
The ENVIRONMENT DIVISION defines those aspects of a program that depend on
hardware considerations. This division is optional.

Format
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SOURCE-COMPUTER, [computer-name.]]

["OBJECT-COMPUTER, [computer-name]
L [object-computer-entry].
rSPECIAL-NAMES.
[_ [special-names-entry] ...]

r
r

INPUT-OUTPUT_SECTTON.

["FILE-CONTROL. ~|
_{file-control-entry} • • -J

-O-CONTROL.ri-o-c
_u-o-control-entry]]

First Edition 6-1

COBOL85 Reference Guide

Syntax Rules
1. The ENVIRONMENT DIVISION must begin with the header ENVIRONMENT

DIVISION, followed by a period and a space.
2. The format above indicates the mandatory sequence of required and optional paragraphs

in the ENVIRONMENT DIVISION.
Prime Extension: The clauses in the I-O-CONTROL paragraph can appear in any order.

3. The CONFIGURATION SECTION and the INPUT-OUTPUT SECTION are optional.

General Rules

1. Each section within the ENVIRONMENT DIVISION begins with its section-name,
followed by the word SECTION, and each paragraph within each section begins with its
paragraph-header.

2. Use the ENVIRONMENT DIVISION to document hardware-dependent features of a
program.

3. computer-name serves only as documentation. Use it to identify the computer on which
the COBOL85 program is compiled. You can use computer-name as a programmer-
defined word elsewhere in the program.

CONFIGURATION SECTION
The CONFIGURATION SECTION is the first of two optional sections in the
ENVIRONMENT DIVISION. It contains three optional paragraphs: SOURCE-COMPUTER,
OBJECT-COMPUTER, and SPECIAL-NAMES.

SOURCE-COMPUTER

Format
SOURCE-COMPUTER, [computer-name [WITH DEBUGGING MODE].]

General Rules

1. computer-name serves only as documentation. It identifies the computer on which the
COBOL85 program is compiled. You can use computer-name as a programmer-defined
word elsewhere in the program.

2. If you specify the WITH DEBUGGING MODE clause, COBOL85 compiles all
debugging lines as it compiles all other source lines in the program.

3. If you do not specify the WITH DEBUGGING MODE clause, COBOL85 compiles all
debugging lines as if they were comment lines.

6-2 First Edition

" >

1
~

The ENVIRONMENT DIVISION

OBJECT-COMPUTER

r

r

Format
OBJECT-COMPUTER, [computer-name]

r W Q R D S 1
, MEMORY SIZE integer -\ CHARACTERS >

MODULES J

[, PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

[, SEGMENT-LIMIT IS segment-number].

General Rules

1. computer-name serves only as documentation. Use it to identify the computer on which
the COBOL85 program is executed. You can use computer-name as a programmer-
defined word elsewhere in the program.

2. The MEMORY SIZE clause serves only as documentation, alphabet-name-1 is a
programmer-defined word, which you define in the SPECIAL-NAMES paragraph as
NATIVE, EBCDIC, STANDARD-1, or STANDARD-2.

3. If you do not specify the PROGRAM COLLATING SEQUENCE IS clause, the
collating sequence defaults to NATIVE, which is the ASCII collating sequence defined
in Table B-3.

4. When you specify the alphabet-name of the PROGRAM COLLATING SEQUENCE
clause as EBCDIC, nonnumeric comparisons in conditional expressions are made with
respect to the EBCDIC collating sequence defined in Table B-6.

5. When you specify the alphabet-name of the PROGRAM COLLATING SEQUENCE
clause as STANDARD-1, nonnumeric comparisons in conditional expressions are made
with respect to the standard ASCII collating sequence as defined by ANSI X3.4-1977.
Table B-4 describes this collating sequence.

6. When you specify the alphabet-name of the PROGRAM COLLATING SEQUENCE
clause as STANDARD-2, nonnumeric comparisons in conditional expressions are made
with respect to the International Reference Version of the ISO 7-bit code defined in
International Standard 646. Table B-5 describes this collating sequence.

7. If there is no correspondence between the characters of a specified alphabet-name and
the native character set, the collating sequence of those characters is undefined.

8. Chapter 14 explains the use of the PROGRAM COLLATING SEQUENCE clause as it
relates to SORT and MERGE statements.

9. The SEGMENT-LIMIT clause serves only as documentation.

First Edition 6-3

COBOL85 Reference Guide

Example
In the following example, the comparison and the first sort are performed with respect to the
EBCDIC collating sequence. The second sort is performed with respect to the ASCII
collating sequence described in Table B-3.

OBJECT-COMPUTER.
PROGRAM COLLATING SEQUENCE IS ALPHABET1.

SPECIAL-NAMES.
ALPHABET1 IS EBCDIC,
ALPHABET2 IS NATIVE.

PROCEDURE DIVISION.

IF NAME < 'SMITH' PERFORM INSERT-PARA,

SORT FILE-1 ON ASCENDING KEY NAME
INPUT PROCEDURE IS SORT-INPUT
OUTPUT PROCEDURE IS SORT-OUTPUT.

SORT FILE-2 ON ASCENDING KEY NAME
COLLATING SEQUENCE IS ALPHABET2
INPUT PROCEDURE IS SORT-INPUT2
OUTPUT PROCEDURE IS SORT-OUTPUT2

6-4 First Edition

T/7e ENVIRONMENT DIVISION

SPECIAL-NAMES
This paragraph is required only if you use one or more of its statements.

Format
SPECIAL-NAMES.

[CONSOLE IS mnemonic-name-1] . . .

'switch-name [IS mnemonic-name-2]

RON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2] VOFF STATUS IS condition-name-2 [ON STATUS IS condition-name-1] J

{STANDARD-1

STANDARD-2

EBCDIC

CLASS class-name-1 IS J fiterflM Tfj||f^T Hteral-2

[CURRENCY SIGN IS literal-3]

[DECIMAL-POINT IS COMMA].

Syntax Rules
1. Only the ACCEPT and DISPLAY statements can reference mnemonic-name-1.
2. Only a Format 3 SET statement can reference mnemonic-name-2; hence, the ON

STATUS and OFF STATUS phrases are optional.
3. The eight switch-names are

CBLSWO
CBLSW1
CBLSW2
CBLSW3
CBLSW4
CBLSW5
CBLSW6
CBLSW7

4. The words THRU and THROUGH are equivalent.

First Edition 6-5

C0B0L85 Reference Guide

5. The literals specified in the literal-1 THRU literal-2 phrase,

• If numeric, must be unsigned integers and must have a value within the range of 0
through 255

• If nonnumeric, must each be one character in length

General Rules

1. mnemonic-name-1 is a programmer-defined word that is associated with CONSOLE
throughout the program. The following example uses TTY as mnemonic-name-1. The
coding causes the field YEAR OF HIRE-DATE to be displayed on the console.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SPECIAL-NAMES. CONSOLE IS TTY.

PROCEDURE DIVISION.

DISPLAY YEAR OF HIRE-DATE UPON TTY.

2. mnemonic-name-2 is a programmer-defined word that is associated with the external
switch to which it refers throughout the program. It can be set by responding to the
automatic runtime prompt (see Chapter 3) or by using the SET statement within the
program (see Chapter 8). Switches allow for changes in the application environment
each time a program is run. For example, a switch can determine whether or not to add
month-end processing, switch-mnemonic-names or switch-status-conditions are
programmer-defined names. You can specify ON and OFF status by associating
condition-names with each switch used in a program. You can determine the status of a
switch by testing an associated condition-name, as in the following example.
condition-names can be qualified by mnemonic-names, as SWITCH-ON OF SWITCH-
ONE in this example.

SPECIAL-NAMES.
CBLSWO IS TAPE-SWITCH,

ON STATUS IS TAPE-SWITCH-ON,
OFF STATUS IS TAPE-SWITCH-OFF,

CBLSW1 IS SWITCH-ONE,
ON STATUS
OFF STATUS

CBLSW2 IS SWITCH-TWO,
ON STATUS

6-6 First Edition

IS SWITCH-ON,
IS SWITCH-OFF,

IS SWITCH-ON,
OFF STATUS IS SWITCH-OFF,

7/7e ENVIRONMENT DIVISION

TEST SECTION.
ONLY-PARAGRAPH.

IF TAPE-SWITCH-OFF DISPLAY 'TAPE CANNOT BE PROCESSED'.
IF SWITCH-ON OF SWITCH-ONE DISPLAY 'NO PRINT-OUT'.

3. Use the ALPHABET clause to relate a programmer-defined name to a specified
character code set and/or collating sequence.

4. You can use alphabet-name-1 as the object of the PROGRAM COLLATING
SEQUENCE clause in the OBJECT-COMPUTER paragraph, as the object of the
COLLATING SEQUENCE clause of SORT and MERGE statements, and as the object
of the CODE-SET clause for magnetic tape files.

5. Use the CLASS clause to relate a name to a set of specific characters. You can reference
class-name-1 only in a class condition, class-name-1 consists of the exclusive set of
characters defined by the values of the literals in the CLASS clause. The value of each
literal specifies

• If numeric, the ordinal number of a character within the native character set. This
value must not exceed 255.

• If nonnumeric, the actual character within the native character set. If the value of the
nonnumeric literal contains multiple characters, each character in the literal is
included in the set of characters identified by class-name-1.

For example,

CLASS EXTENDED-ALPHA IS
"A" THRU "Z",
"a" THRU "z",

01 CUST-NAME PIC X(50) VALUE "O'BRIEN, JEAN-CLAUDE'

IF CUST-NAME IS EXTENDED-ALPHA

6. If you specify the THROUGH phrase, the contiguous characters in the native character
set beginning with the character specified by the value of literal-1, and ending with the
character specified by the value of literal-2, are included in the set of characters
identified by class-name-1. In addition, the contiguous characters specified by a given
THROUGH phrase can specify characters of the native character set in either ascending
or descending sequence.

First Edition 6-7

COBOL85 Reference Guide

7. literal-3 represents the currency sign to be used in the PICTURE clause. It is a single-
character, nonnumeric literal that replaces the dollar sign as the currency sign. The
designated character must not be a single or double quotation mark, or any of the
characters defined for PICTURE representations.

8. The DECIMAL-POINT IS COMMA clause exchanges the functions of comma and
period in the character-string of PICTURE clauses and in numeric literals.

9. You can use the ten implementor-names CONSOLE, CBLSWO through CBLSW7, and
EBCDIC as programmer-defined words elsewhere in the program.

INPUT-OUTPUT SECTION
The INPUT-OUTPUT SECTION is the second of two optional sections in the
ENVIRONMENT DIVISION. Use this section when the program processes data files. Use it
to specify peripheral devices and information needed to transmit and handle data between the
devices and the program. The section has two optional paragraphs: FILE-CONTROL and
I-O-CONTROL.

FILE-CONTROL
Each file requires one file-control-entry. The format you use depends on file organization.

Format 1
SELECT [OPTIONAL] file-name-1

ASSIGN TO Sdevice-name\
[^literal-1 J

[reserve «»^-; [^eaJ j
[[ORGANIZATION IS] SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-1].

6-8 First Edition

T/70 ENVIRONMENT DIVISION

Format 2
SELECT [OPTIONAL] file-name-1

ASSIGN TO ^vice-name^
[^lUeral-1 J

[RESERVE intege,l[^ J]
[ORGANIZATION IS] RELATIVE

(SEQUENTIAL [, RELATIVE KEY IS data-name-1]
ACCESS MODE IS

] f RANDOM "I
I [DYNAMICJ '

RELATIVE KEY IS data-name-1

[FILE STATUS IS data-name-2].

Format 3
SELECT [OPTIONAL] file-name-1

ASSIGN TO S^-name\
[^literal-1 J

[reserve ^i[™]]
[ORGANIZATION IS] INDEXED

f SEQUENTIAL !̂ACCESS MODE IS < RANDOM }
[dynamic J

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] • • •

[FILE STATUS IS data-name-3].

General Rules

1. file-name is a programmer-defined name described in the DATA DIVISION. Each file
specified here must have a file-description-entry in the DATA DIVISION. The ASSIGN
clause associates the file-name with a storage medium or input-output hardware. The
device-names are COBOL85 implementor-names that you can use as programmer-
defined names elsewhere in the program. Table 6-1 lists allowable device-names.

First Edition 6-9

COBOL85 Reference Guide

TABLE 6-1
Device Specifications

6-10 First Edition

device-name Hardware Device

PRIMOS

PRISAM

MIDASPLUS

PRINTER

MT9

PFMS (obsolete)

TERMINAL

OFFLINE-PRINT

Disk storage (sequential file)

Disk storage (sequential, indexed, or relative file)

Disk storage (indexed or relative file)

System printer (goes to disk, can be spooled)

9-track magnetic tape drive

Disk storage (Prime File Management System); at
runtime, is one of the above devices

CRT terminal or TTY terminal

FORMS (PRINTER) interface

For example,

SELECT SCREEN-FILE ASSIGN TO TERMINAL.
SELECT DISK-SEQUENTIAL-FILE ASSIGN TO PRIMOS.
SELECT TAPE-FILE1 ASSIGN TO MT9.
SELECT INDEXED-FILE ASSIGN TO PRISAM.
SELECT RELATIVE-FILE ASSIGN TO MIDASPLUS.

literal-1 must contain one of the allowable device-names.
ASSIGN TO PRIMOS designates a PRIMOS disk sequential file. It can be fixed-length
or variable-length; compressed or uncompressed. Its organization must be
SEQUENTIAL.
ASSIGN TO PRISAM designates a PRISAM managed file. Its organization can be
SEQUENTIAL, INDEXED, or RELATIVE.
ASSIGN TO MIDASPLUS designates a MIDASPLUS managed file. Its organization
can be INDEXED or RELATIVE.
ASSIGN TO PFMS designates a PRIMOS, PRISAM, or MIDASPLUS file. You can
also use PFMS for tape files if runtime file assignment is to be made to a magtape
device. You can also use it to indicate a PRINTER file if the first WRITE statement
contains an ADVANCING clause.

Note
PFMS is included for compatibility with CBL. To achieve optimum compile-time and
runtime performance from your COBOL85 program, specify the file management system
(PRIMOS, PRISAM, MIDASPLUS, and so on) to be used.

7/7e ENVIRONMENT DIVISION

2. The OPTIONAL phrase applies only to files opened in the INPUT, l-O, or EXTEND
mode. The OPTIONAL phrase does not apply to files opened in OUTPUT mode. You
can specify it for files that are not always present each time the program is executed.
If an optional file is unavailable at runtime, the successful execution of an OPEN
statement with an EXTEND or 1-0 phrase creates the file. This creation takes place as if
the following statements were executed in the order shown:

OPEN OUTPUT file-name.
CLOSE file-name.

After these statements, the OPEN statement specified in the source program is executed.
If an optional file is unavailable at runtime and is opened in INPUT mode, the first
READ statement to the file returns a status code indicating END OF FILE or RECORD
NOT FOUND.
Table 6-2 lists the file types and OPEN modes currently supported.

TABLE 6-2
OPTIONAL File Types and OPEN Modes ■•

OPEN Mode

File Type Input l-O Extend

PRIMOS sequential disk
PRISAM sequential
MIDASPLUS indexed/relative
PRISAM indexed/relative
Labeled magtape
Unlabeled magtape

In all OPEN modes, OPTIONAL is ignored for files that you assign to TERMINAL and
OFFLINE-PRINT.
OPTIONAL is not supported for PRISAM files (SEQUENTIAL, RELATIVE, and
INDEXED) for EXTEND and 1-0 modes. If the file is not available at runtime, an error
condition exists.

3. The RESERVE clause is for documentation only. Whether or not you use it, the
compiler assigns buffer areas necessary for processing.

4. The ORGANIZATION clause specifies the logical structure of a file. When you omit the
clause, the default is SEQUENTIAL.

5. Use the ACCESS MODE clause to describe the sequence in which records are accessed.
When you omit this clause, the default is SEQUENTIAL.

6. Chapter 11 discusses the RELATIVE KEY clause.
7. Chapter 10 discusses the RECORD KEY and ALTERNATE RECORD KEY clauses.
8. Use the FILE STATUS clause to specify a two-character field, a data-name described in

the WORKING-STORAGE SECTION or the LINKAGE SECTION, as the file status
field. The data-name can be qualified.

First Edition 6-11

COBOL85 Reference Guide

Prime Extension: The file status field can be either an alphanumeric or an unsigned
numeric display field.
When you specify the FILE STATUS clause in the FILE-CONTROL paragraph,
COBOL85 file control moves a value into the file status field after the execution of
every statement that refers to that file. Thus, the FILE STATUS data item is updated
during the execution of the OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, and
START statements. The value in the file status field indicates to the COBOL85 program
the status of execution of the statement.
Chapter 4 includes a complete discussion of COBOL85 file status codes.

I-O-CONTROL

Format
I-O-CONTROL.

SAME
RECORD
SORT
SORT-MERGE

AREA FOR file-name-1, {file-name-2}

'RERUN [ON file-name-1]

EVERY < {;END OF i£^l I „- ,.,
I UNIT J > OF file- name-3

integer-4 RECORDS J
integer-5 CLOCK-UNITS
condition-name

[MULTIPLE FILE TAPE CONTAINS file-name-4
[POSITION integer-6]
[file-name-5 [POSITION integer-7]]...]...

Syntax Rule
The I-O-CONTROL paragraph is optional.

General Rules

1. The compiler treats SAME AREA as SAME RECORD AREA. Use the SAME AREA
or SAME RECORD AREA clause to share the same memory areas for files that are not
sort or merge files. This feature saves memory space and eliminates MOVEs from one
record to another, thus saving execution time. Do not list a file in more than one SAME
AREA or SAME RECORD AREA clause.
The sample program in Chapter 10 contains an example.

2. The SAME AREA or SAME RECORD AREA clause specifics that two or more files
are to use the same memory area for processing the current logical record. All the files
can be open at the same time. COBOL85 considers a logical record in the SAME

6-12 First Edition

The ENVIRONMENT DIVISION

RECORD AREA both as a logical record of each opened output file whose file-name
appears in this SAME RECORD AREA clause, and as a record of the most recently read
input file whose file-name appears in this SAME RECORD AREA clause. This is
equivalent to an implicit redefinition of the area; that is, records are aligned on the
leftmost character position.

3. If one or more file-names of a SAME AREA clause appear in a SAME RECORD
AREA clause, all the file-names in the first clause must appear in the second clause.
However, additional file-names appearing in the SAME RECORD AREA clause need
not appear in the SAME AREA clause.

4. The files referenced in the SAME AREA or SAME RECORD AREA clause need not all
have the same organization or access.

5. The RERUN clause is checked for syntax only.
6. Chapter 12 discusses the MULTIPLE-FILE clause.

ENVIRONMENT DIVISION Example
This example forms one program with the examples at the end of Chapters 5, 7, and 8.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TAPE-FILE, ASSIGN TO MT9.
SELECT PRINT-FILE, ASSIGN TO PRINTER.
SELECT DISK-FILE, ASSIGN TO PRIMOS.

* *

r

r
First Edition 6-13

The DATA DIVISION

r This chapter discusses the third of the four major divisions of the COBOL85 program, the
DATA DIVISION. The chapter describes the three optional sections of the DATA
DIVISION: the FILE SECTION, the WORKING-STORAGE SECTION, and the LINKAGE
SECTION. It also describes the clauses of the file-description-entry and the clauses of the
record-description-entry. The chapter concludes with an example of the DATA DIVISION.

r DATA DIVISION
The DATA DIVISION of the COBOL85 source program defines the nature and
characteristics of the data that the program processes. Data to be processed falls into three
categories:

• Data in files, which enter or leave the internal memory of the computer from or to a
specified storage area or areas

• Data developed internally and placed into intermediate or working storage
• Data passed to the program from a calling program

The DATA DIVISION is optional and consists of three optional sections. If you use the
sections, they must appear in the following order:

1. FILE SECTION. This section describes files and records in files.
2. WORKING-STORAGE SECTION. This section defines memory space for the storage

of items that are not part of external data files but are intermediate processing results.
3. LINKAGE SECTION. This section, in a called program, describes data available to

both the called program and the calling program.

r
r First Edition 7-1

COBOL85 Reference Guide

Format
DATA DIVISION.

FILE SECTION.

[file-description-entry,[record-description-entry] .]
r~sort-merge-file-descripHon-entry.~\
_{record-description-entry} • • • J

WORKING-STORAGE SECTION.

Y~ level-77-data-description-entry~\
_data-description-entry J

LINKAGE SECTION.

V" level-77-data-description-entry~\
_data-description-entry J

Syntax Rules
1. If you include the DATA DIVISION, begin it with the header DATA DIVISION,

followed by a period and a space.
2. If you include the optional sections of the DATA DIVISION, they must appear in the

order shown above.
3. Prime Extensions: file-description-entries and sort-merge-file-description-entries can

appear in any order. In WORKING-STORAGE, level-01 and level-77 items can appear
in any order.

--" ■•

General Rules

1. Each section within the DATA DIVISION begins with its section-name, followed by a
period and a space.

2. In WORKING-STORAGE, a data-description-entry uses the same format as a record-
description-entry .

FILE SECTION
The RLE SECTION is the first of three optional sections in the DATA DIVISION. Use this
section to define the structure of data files. Define each file with a file-description-entry (FD)
or a sort-merge-file-description-entry (SD), and with one or more associated record-
description-entries.

7-2 First Edition

The DATA DIVISION

Format
FILE SECTION.

[file-description-entry, {record-description-entry] • • • Isort-merge-file-description-entry, {record-description-entry} • • -J

"

r

Syntax Rules
1. If you use the FILE SECTION, begin it with the header FILE SECTION, followed by a

period and a space.
2. The FILE SECTION contains FD and SD entries. Follow each entry immediately with

one or more associated record-description-entries. The number of FD and SD entries in
the FILE SECTION is unlimited. The number of files that can be open at once is limited
by PRIMOS and is listed in Appendix I.

General Rule
Use a SELECT statement in the ENVIRONMENT DIVISION to associate each FD or SD
entry with an 1-0 device.

Note
This chapter describes the format and the clauses required in an FD entry for nonsort files.
Chapter 14 discusses the SD entry for sort-merge files.

WORKING-STORAGE SECTION
The WORKING-STORAGE SECTION of the DATA DIVISION describes noncontiguous
data (level-77 data with no hierarchical relationship) and records that are not part of external
files, but are developed and processed internally. You can use the VALUE clause to assign
initial values to data items in this section.

Format
WORKING-STORAGE SECTION.

r le vel-77-description-entry~\
_record-description-entry _| *

Syntax Rules
1. The WORKING-STORAGE SECTION is optional. If you include it, begin it with the

words WORKING-STORAGE SECTION, followed by a period and a space.
2. Noncontiguous item names and record names in the WORKING-STORAGE SECTION

must be unique; they cannot be qualified. Subordinate data-names need not be unique if
you can make them unique by qualification, or if you never reference them.

First Edition 7-3

COBOL85 Reference Guide

3. Apply the level-number 77 to noncontiguous elementary data items. Define each
noncontiguous item in a separate data-description-entry. The following data clauses are
required in each noncontiguous data-description-entry:

• level-number 11
• data-name
• Either the PICTURE clause or the USAGE IS INDEX, BINARY, COMP, COMP-1,

or COMP-2 clause

Other data description clauses are optional. If necessary, use them to complete the
description of the item.

4. Group data items in the WORKING-STORAGE SECTION that have a hierarchical
relationship according to the rules for formation of record descriptions. Any clause that
you can use in a record description in the FILE SECTION can be used in a data
description in the WORKING-STORAGE SECTION. (See the section, record-
description-entry, later in this chapter, for more information.)

General Rules

1. WORKING-STORAGE items described in this chapter include the following:

• Noncontiguous elementary items having the level-number 77. These items have no
hierarchical relationship. You cannot group them into records or further subdivide
them.

• Data items in records not associated with an input-output device and not part of
external data files, but developed and processed internally. These items have level-
numbers 01 through 49.

2. VALUE clauses, prohibited in the FILE SECTION, are permitted throughout WORKING-
STORAGE to specify the initial value of an item, except for an index data item.

Note
Use the VALUE clause or PROCEDURE DIVISION statements to initialize all
WORKING-STORAGE data items before using them. Unexpected values may appear in
uninitialized data items.

LINKAGE SECTION

7-4 First Edition

The LINKAGE SECTION describes data previously defined in a calling program that is
available to a called program.

Format
LINKAGE SECTION.

r i e v e l - 7 7 - d e s c r i p t i o n - e n t r y ~ \ ^ _
\j-ecord-description-entry J * * *

77?e DATA DIVISION

Syntax Rules
1. The LINKAGE SECTION is optional. It is meaningful only in a called program. If you

include a LINKAGE SECTION, begin it with the words LINKAGE SECTION,
followed by a period and a space.

2. Each LINKAGE SECTION record-name and noncontiguous item name must be unique
within the called program; the names cannot be qualified.

3. Apply level-number 11 to noncontiguous elementary data items. Define each level-
number 11 data item in a separate data-description-entry. The following data clauses are
required in each noncontiguous data-description-entry:
• level-number 11
• data-name
• The PICTURE clause or the USAGE IS INDEX, BINARY, COMP, COMP-1, or

COMP-2 clause

Other data description clauses are optional. If necessary, use them to complete the
description of the item. However, the EXTERNAL clause has no meaning in the
LINKAGE SECTION.

4. Group data items in the LINKAGE SECTION that have a hierarchical relationship
according to the rules for formation of record descriptions. (See the section, record-
description-entry, later in this chapter, for more information.)

5. In the LINKAGE SECTION, only items that have a level-number 88 can have initial
values.

General Rules

1. The LINKAGE SECTION of the DATA DIVISION is meaningful only if the program
containing it is called by another program whose CALL statement contains a USING
phrase.

2. Use the LINKAGE SECTION to describe data that is available through the calling
program, and that is referred to in both the calling program and the called program.
COBOL85 does not allocate space in the called program for data items defined in the
LINKAGE SECTION of that program. Instead, PROCEDURE DIVISION references to
these data items are resolved at runtime by equating the reference in the called program
to the location used in the calling program.

3. Data items that you define in the LINKAGE SECTION of the called program can be
used within the PROCEDURE DIVISION of the called program only if you specify
them as operands of the USING phrase in the PROCEDURE DIVISION header, or
subordinate to such operands, and the object program is under the control of a CALL
statement that specifics a USING phrase.

Note
Chapter 13 includes a LINKAGE SECTION example.

First Edition 7-5

COBOL85 Reference Guide

file-description-entry
The file description provides information concerning the physical structure, identification,
and record names of a nonsort file. W'rite file-description-entries only in the FILE SECTION
of the DATA DIVISION. The sections that follow this section describe the clauses that you
can specify in a file-description-entry.

Format

FD file-name r COMPRESSED \
\ UNCOMPRESSED/

[; IS EXTERNAL]

; BLOCK CONTAINS [integer-1 TO] integer-2 {cISr^TERSj

[; CODE-SET IS alphabet-name]

fRECORD IS \ fSTANDARDl j; LAHfcL -^REC0RDS AREj* X OMITTED J |[

" >

; RECORD <i
f CONTAINS integer-3 CHARACTERS
IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]
CONTAINS integer-6 TO integer-7 CHARACTERS
IS NOT VARYING IN SIZE

[; RECORDING MODE IS {R U, S, V}]

{data-nliteral[• VALUE OF FILE-ID IS |^-«^j- .. 1

[record-description-entry]

Syntax Rules
1. The level indicator FD identifies the beginning of a file description and must precede the

file-name.
2. The file-name follows the general rules for word formation listed in Chapter 4.

7-6 First Edition

~)

The DATA DIVISION

3. Use the COMPRESSED/UNCOMPRESSED clause only with sequential files. The
default is UNCOMPRESSED.

4. The file-description-entry is a sequence of clauses that you must terminate with a period.
The number of file-description-entries allowed in the FILE SECTION is unlimited; the
number of files that can be open at one time is limited by PRIMOS and is listed in
Appendix I.

5. If you use the DATA RECORD clause, follow the file-description-entry with one or
more record-description-entries. See the section, record-description-entry, later in this
chapter, for more information.

6. All clauses that follow file-name are optional.

The following sections describe the clauses that you can specify in a file-description-entry.

COMPRESSED/UNCOMPRESSED — Prime Extension
The UNCOMPRESSED clause enables a disk READ or WRITE based on record length,
while the COMPRESSED clause enables a READ or WRITE by compression control
characters.

Compression is the elimination of multiple blank characters. File compression is effected by
replacing any string of three or more blank characters with a control character plus a count.
When a record is written with compression control, the first space character in such a string is
replaced by the ASCII control character DC1, and the second space is replaced by a binary
count (3 through 255) of spaces in the string. The 3rd through 255th spaces are then deleted.
When the same record is read with compression control, each combination of DC1 plus
number is replaced by that number of spaces before the record is made available to the
program.

WARNING
If your program reads a compressed file as uncompressed, a premature end of file results, and
data is transferred lo seemingly inappropriate fields.

Format

FD file-name f COMPRESSED \~
I \ UNCOMPRESSED J J

r
r

General Rules

1. If you specify neither clause, the default is UNCOMPRESSED.
2. You must use the UNCOMPRESSED clause when your program reads sequential 1-0

files containing nondisplay numeric data, such as packed or binary data.

First Edition 7-7

COBOL85 Reference Guide

3. You must use the COMPRESSED clause to read sequential disk files in compressed
format (for example, files that you create using ED or EMACS, or files written in
compressed format by other programs).

EXTERNAL
The EXTERNAL clause in a file-description-entry specifies that the file is external.
Therefore, the file's data items are available to every program in the run unit that describes
that file. An external data item is often referred to as a common block. When one COBOL85
program calls another, defining a file used by both programs as EXTERNAL saves storage
space. The called program need not define the file in its linkage area. The file need not be
closed and reopened to be accessed by different programs in the run unit. If a calling
program opens the file, a called program can read or write to the file, and the calling program ̂ ^^
or another program can close it.
You can also use the EXTERNAL clause in record-description-entries in WORKING-
STORAGE. See the EXTERNAL section later in this chapter for more information.

Format
IS EXTERNAL

Syntax Rules
1. You can specify the EXTERNAL clause in a file-description-entry.
2. In the same program, ihe file-name that you specify as the subject of the entry must be

neither the same data-name that you specify for any other data-description-entry that
includes the EXTERNAL clause, nor the same program-name that you specify in the
PROGRAM-ID paragraph.

3. When you specify EXTERNAL in a file-description-entry, the record-description-entries
associated with that file are implicitly defined as EXTERNAL.

4. When you specify EXTERNAL in a file-description-entry, the WORKING-STORAGE
items associated with that file, such as FILE STATUS, RELATIVE KEY, or FILE-ID,
are implicitly defined as EXTERNAL.

General Rules
The file named by the EXTERNAL clause can be accessed and processed by any program in
the run unit that describes it according to the following rules.

1. Within a mn unit, if two or more programs describe the same external file, the associated
data-description-entries, including all subordinate data-names and their redefinitions,
must be identical.

2. The file control block associated with this file is external.

7-8 First Edition

The DATA DIVISION

Note
If you use SEG as the loader, ensure that all external items (explicit or implicit) in the run
unit have variable names that are unique through the first eight characters.

BLOCK CONTAINS
The BLOCK CONTAINS clause specifies the size of a physical record.

Format

BLOCK CONTAINS [integer-l TO, intege,2 {S^}

Chapter 12 discusses the BLOCK CONTAINS clause.

CODE-SET
The CODE-SET clause specifies the character code set used to represent data on external media.

Format
CODE-SET IS alphabet-name

Chapter 12 discusses the CODE-SET clause.

DATA RECORDS
The DATA RECORDS clause serves only as documentation for the names of data records

,—. wi th thei r associated f i le .

Format

n._. /"RECORD IS 1 . , , r J^^ iRECORDS XRE\data-name-1 [, data-name-2] • . .

Syntax Rule
data-name-1 and data-name-2 are the names of the data records for the FD entry. You must
specify them as 01-level items following the file description, and they must follow the
general rules for word formation listed in Chapter 4.

General Rules

rl. More than one data-name indicates that the file contains more than one type of datarecord. These records can have different sizes and formats. The order in which you list
them is not significant.

r First Edition 7-9

COBOL85 Reference Guide

2. Conceptually, all data records within a file share the same area, regardless of the number
or types of data records within the file.

LABEL RECORDS
The LABEL RECORDS clause specifies whether labels exist for the file.

Format

fRECORD IS 1 fSTANDARDl
t RECORDS ARE J ^ OMITTED J

General Rules

1. If you do not specify the LABEL RECORDS clause, LABEL RECORDS OMITTED is
assumed.

2. OMITTED specifies that no explicit labels exist for the file or device to which the file is
assigned.

3. STANDARD specifies that a label exists for the tape file and that the label conforms to
system specifications.

4. Each Prime device requires a specific LABEL option, as shown in Table 7-1.

Note
See Chapter 12 and the Magnetic Tape User's Guide for more information on writing
standard labels for magnetic tape.

TABLE 7-1
LABEL Clause Requirement

Device STANDARD OMITTED

PRIMOS
PRISAM
MIDASPLUS
PFMS (Disk)
TERMINAL
PRINTER
MT9 (Tape)
OFFLINE-PRINT

RECORD
The RECORD clause specifics the exact size of a fixed-length record, or the minimum and
maximum sizes of a variable-length record.

7-10 First Edition

77?© DATA DIVISION

Format 1
RECORD CONTAINS integer-1 CHARACTERS

Format 2
RECORD IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

Format 3
RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

Format 4
RECORD IS NOT VARYING IN SIZE

Notes
The RECORD clause specifies the size of fixed-length or variable-length records for indexed,
relative, and sequential files. Fixed-length records contain the same number of character
positions in each record. Variable-length records can have a range of record sizes. If a file's
organization is relative, all records are preallocated as maximum length records whether you
specify them as fixed or variable.
The maximum allowable size of a single data record is listed in Appendix I.

Syntax Rules
1. In Format 1, no record-description-entry for the file may specify a number of character

positions greater than integer-1.
2. In Format 1, at least one record-description-entry must specify a number of character

positions equal to integer-1.
3. In Format 2, no record-description-entry for the file may specify a number of character

positions less than integer-2 or greater than integer-3.
4. In Format 3, integer-4 and integer-5 refer to the minimum number of characters in the

smallest record and the maximum number of characters in the largest record,
respectively.

General Rules

All Formats:

1. If you do not specify the RECORD clause, the size of each data record is completely
defined in the record-description-entry. If you specify multiple record-description-
entries having different lengths and/or containing a variable occurrence data item, and
you specify the -VARYING compiler option, COBOL85 processes records as if you
specified a Format 3 RECORD clause. If you specify multiple record-description-entries
having different lengths and/or containing a variable occurrence data item, and you

First Edition 7-11

COBOL85 Reference Guide

specify the -NOJVARYING compiler option, COBOL85 processes records as if you
specified a Format 1 RECORD clause.

2. If you specify the RECORDING MODE IS V clause, COBOL85 processes records as if
you specified a Format 3 RECORD clause with an implied integer-4 and integer-5 that
represent the smallest and largest record-description-entry for the file. RECORDING
MODE IS V overrides the -NO_VARYING compiler option.

3. If you specify the RECORD IS NOT VARYING clause, COBOL85 processes records as
if you specified a Format 1 RECORD clause with an implied integer-1 that represents
the largest record-description-entry for the file. RECORD IS NOT VARYING overrides
the -VARYING compiler option.

4. The number of character positions required to store the logical record, regardless of the
type of characters used to represent the items within the logical record, determines the
size of each data record. For variable-length records, the size of the record is the sum of
the number of character positions in all fixed-length elementary items plus the sum of
the maximum number of character positions in any variable occurrence data item
subordinate to the record. This sum includes any compiler-generated filler (see the
section Alignment of Substructures Within Structures in Chapter 4).

5. During the execution of a sending or receiving operation, the number of character
positions in a variable-length record being sent or received is determined as follows:

• If the record does not contain a variable occurrence data item, the size of the record
is the number of character positions in the record.

• If the record contains a variable occurrence data item, the size of the record is the
sum of the fixed portion of the record and that portion of the variable occurrence
data item described by the number of occurrences at the start of statement execution.

6. If a record description contains a variable occurrence data item, and you specify the
-VARYING compiler option,

• The minimum number of table elements described in the record determines the
minimum number of character positions associated with the record description.

• The maximum number of table elements described in the record determines the
maximum number of character positions associated with the record description.

Format 1:

1. Use Format 1 to specify fixed-length records.
2. If you specify the -VARYING compiler option, it is ignored.
3. If you specify multiple record-description-entries having different lengths, COBOL85

uses the maximum size record length in all 1-0 operations.

Format 2:

1. Use Format 2 to specify variable-length records, especially when the record-description-
entries do not specify the largest or the smallest actual record size associated with the file.

2. If you specify the -NO_VARYING compiler option, it is ignored.

~ >

7-12 First Edition

The DATA DIVISION

3. COBOL85 uses integer-2 and integer-3 to check the size file attributes during an OPEN
operation. The actual file attributes (minimum and maximum logical record sizes) must
equal integer-2 and integer-3, respectively. COBOL85 ignores the minimum and
maximum sizes in record-description-entries during file attribute checking.

4. If you specify Format 2 for a file whose record descriptions are the same length, the
library 1-0 routines process the records as variable-length records.

5. If you do not specify integer-2, the minimum number of character positions contained in
any record of the file is equal to the minimum number of character positions described
for a record in that file.

6. If you do not specify integer-3, the maximum number of character positions contained in
any record of the file is equal to the maximum number of character positions described
for a record in that file.

Format 3:

1. Use Format 3 to specify variable-length records when the record-description-entries
specify the largest and the smallest actual record size associated with the file.

2. If you specify the -NOJVARYING compiler option, COBOL85 ignores integer-4 and
processes records as if you specified a Format 1 RECORD clause.

3. COBOL85 uses integer-4 and integer-5 to check the size file attributes during an OPEN
operation. The actual file attributes (minimum and maximum logical record sizes) must
equal integer-4 and integer-5, respectively.

RECORDING MODE
The RECORDING MODE clause specifies the format of the logical records in a file.

Format
RECORDING MODE IS {F, U, S, V)

General Rules

1. You can specify F mode (fixed-length format) when all the records in a file are the same
length. The specification of the RECORDING MODE IS F clause overrides the
-VARYING compiler option.

2. You can specify U mode (unspecified format) for any combination of record
descriptions. This mode is ignored by the COBOL85 compiler.

3. You can specify S mode (spanned format) for any combination of record descriptions.
This mode is ignored by the COBOL85 compiler.

4. You can specify V mode (variable-length fomiat) when the records of a file vary in
length. You can use this mode for single record-description-entrics or for multiple
record-description-entries. See the preceding section for more information on variable-
length record specification. The specification of the RECORDING MODE IS V clause
overrides the -NOJVARYING compiler option.

First Edition 7-13

COBOL85 Reference Guide

5. If you specify the RECORDING MODE IS V clause for a file whose record descriptions
are the same length, the library 1-0 routines handle and format the records as variable-
length records.

VALUE OF FILE-ID
The VALUE OF FILE-ID clause associates the internal filename with a disk file or a tape
file, thus allowing for the linkage of internal and external filenames.

Format

fdata-name-3VALUE OF FILE-ID IS
\literal-2

Syntax Rules
1. Disk filenames in data-name-3 and literal-2 must have the following format:

[[[MFD-name] directory-name] sub-directory-name ...] file-name
['. share-mode [, wait-mode]]

where the elements of this format have the following meanings:

E l e m e n t M e a n i n g
file-name The disk filename
colon (:) Punctuation required to specify optional modes for PRISAM files
share-mode Optional share mode for PRISAM files:

FSH Fully shared (default)
EXC Exclusive
PRO Protected

comma (,) Punctuation required to specify optional wait-mode for PRISAM files
wait-mode Optional wait mode for PRISAM files:

NWT No wait (default)
WAT Wait

For example,

VALUE OF FILE-ID IS 'MY-FILE:EXC,WAT'

identifies a PRISAM file and specifies share and wait modes.

7-14 First Edition

* >

7/76 DATA DIVISION

Notes
To specify a wait-mode, you must first specify a share-mode.
If file-name is not a PRISAM file, share-mode and wait-mode are ignored.
If you specify an invalid share-mode or wait-mode, the program aborts at runtime.
See the PRISAM User's Guide for more information on share and wait modes.

2. Tape filenames in data-name-3 and literal-2 must have one of the formats described in
Chapter 12.

3. Do not use the VALUE OF FILE-ID clause for files assigned to TERMINAL or
OFFLINE-PRINT devices.

4. You can use the implementor-name FILE-ID as a programmer-defined word elsewhere
in the program.

5. literal-2 is a nonnumeric literal that must not exceed 128 characters.
6. data-name-3 must be an alphanumeric item defined in the WORKING-STORAGE

SECTION. It can be qualified, but it must not be subscripted or indexed. The value of
data-name-3 must not exceed 128 characters.

General Rules

1. If you do not specify the VALUE OF FILE-ID clause, the compiler uses the file-name
following FD as the name of the file.

2. If you specify the VALUE OF FILE-ID clause, the compiler uses literal-2 or the value
in data-name-3 as the name of the file or pathname. The COBOL85 program must
assign to data-name-3 a value that is the pathname or filename.

3. To change the name of a file during the execution of the run unit, you can assign a value
to data-name-3 with ACCEPT or MOVE statements. For an example, see the sample
program at the end of Chapter 11.

4. If the program changes the value of data-name-3, it must close and then reopen the file
in order to implement the new value of data-name-3.

5. Use the -FILE_ASSIGN compiler option if you wish to modify the value of literal-2 or
data-name-3 at the beginning of program execution. See Appendix N for more details.

Examples
You can associate a PRIMOS file named FILEX with a logical COBOL85 file named TEST-
FILE in any of the following ways.

1. VALUE OF FILE-ID IS literal:

FD TEST-FILE
LABEL RECORDS OMITTED
VALUE OF FILE-ID 'X>Y>FILEX'.

First Edition 7-15

COBOL85 Reference Guide

2. VALUE OF FILE-ID IS data-name:

FD TEST-FILE
LABEL RECORDS OMITTED
VALUE OF FILE-ID IS TFILE-NAME.

WORKING-STORAGE SECTION.
7 7 T F I L E - N A M E P I C X (2 4) .

You can associate an actual filename with the logical filename TEST-FILE by
executing COBOL85 statements. For example,

IF NEW-FILE = 1
MOVE "FILEX" TO TFILE-NAME,

ELSE IF NEW-FILE = 2
MOVE "OTHER" TO TFILE-NAME,

ELSE
MOVE "ARTHUR>TESTFILE" TO TFILE-NAME.

You can also use the ACCEPT verb to associate an actual filename with a logical
filename. For example,

MOVE SPACES TO TFILE-NAME
DISPLAY "ENTER TEST-FILE NAME: " WITH NO ADVANCING.
ACCEPT TFILE-NAME.

record-description-entry
A record description describes the characteristics of a particular record. You can code record-
description-entries in the FILE SECTION, the WORKING-STORAGE SECTION, and the
LINKAGE SECTION of the DATA DIVISION. The following sections describe the clauses
that you can specify in a record-description-entry.

7-16 First Edition

* >

1

'

77?e DATA DIVISION

Format 1
, . . rdata-name-l~~]level-number ^FlLLER j

[; BLANK WHEN ZERO]

[; IS EXTERNAL]

[> {ip2} »H

r

r
r

ArriIDC J integer-1 TO inr€ger-2 TIMES DEPENDING ON data-name-2X; U U U J R S > \ / / i ^ g ^ r - 2 T I M E S J

{SB ***IS *»««^ t, *m»m] ...]..•
[INEEXED BY index-name-1 [, index-name-2] • • «1

I " f P I C T U R E - i . " 1
' I PIT I character-string

[; REDEFINES data-name-5]

[j [SIGN IS] {trailing! [SER4RATE CHARACTER]

[• f SYNCHRONIZED 1 ["LEFT "I 1
L S Y N C J L R I G H t J j

BINARY
COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3
DISPLAY
INDEX

I PACKED-DECIMAL J

; [USAGE IS] <(

[; VALUE IS literal]

First Edition 7-17

C0B0L85 Reference Guide

Format 2

66 data-name-1 ; RENAMES data-name-2 -{ > data-name

Format 3

*]

f VALUE IS 1 .., . ,r fTHROUGHl ... , ,~|88 CMrtftMHMIMS J^TJJESARE J WimM [JtH^ j """""J

[,. ,-f ["THROUGH! ,., , ., hteral-3 \jfim} J /lteraW

Syntax Rules
1. The level-number in Format 1 can contain a value of 01 through 49, or 77.
2. In Format 1, you can write clauses in any order, except the REDEFINES clause. When

used, this clause must immediately follow the data-name-1 phrase.
3. In Format 1, you must specify the PICTURE clause for every elementary item except

those items whose usage is described as binary (COMPUTATIONAL or BINARY),
floating-point (COMPUTATIONAL-1 or COMPUTATIONAL-2), or INDEX. A group
item cannot contain a PICTURE clause.

4. Do not specify the OCCURS clause in a data-description-entry that has a 66, 77, or an
88 level-number.

5. Format 2 permits alternative, possibly overlapping, groups of elementary items.
6. The words THRU and THROUGH are equivalent.

General Rules

1. A record-description-entry can appear in the FILE SECTION, WORKING-STORAGE
SECTION, and LINKAGE SECTION of the DATA DIVISION.

2. You must describe all records in each file-description-entry by record-description-
entries.

The following sections describe the clauses that you can specify in a record-description-
entry.

level-number
The level-number shows the position of a data item within the hierarchy of a logical record. It
also specifies entries for condition-names, the RENAMES clause, and data items in the
WORKING-STORAGE SECTION and LINKAGE SECTION.

7-18 First Edition

The DATA DIVISION

Format
level-number

Syntax Rules
1. A level-number is required as the first element in each data-description-entry.
2. record-description-entries subordinate to an FD or SD entry must have level-numbers 01

through 49, 66, or 88.
3. data-description-entries in the WORKING-STORAGE SECTION and LINKAGE

SECTION must have level-numbers 01 through 49, 66, 77, or 88.

General Rules

1. Use level-numbers to subdivide a record so that your program can refer to each item in
the record. You can divide a record into subdivisions, and you can further divide each
subdivision. An item that you do not further subdivide is called an elementary item. A
record can itself be an elementary item.

2. A group consists of one or more consecutive elementary items; groups can, in turn, be
combined into other groups. A group includes all group and elementary items following
it until the next item with a level-number less than or equal to the level-number of that
group.

3. level-numbers range from 01, the most inclusive level, to 49, the least inclusive level.
Any level-number except 49 can denote a group.

4. level-number 01 identifies the first entry in each record description. A reference to a
level-01 data-name in the PROCEDURE DIVISION is a reference to the entire record.

5. Multiple level-01 entries subordinate to one FD represent implicit redefinitions of the
same area.

6. Use the following special level-numbers to identify certain entries in which no real
concept of hierarchy exists.
• level-number 11 identifies noncontiguous WORKING-STORAGE or LINKAGE

data items. Use them only as described in Format 1 of the record-description-entry.
Level-77 data items are elementary items that cannot be subdivided.

• level-number 88 identifies entries that define condition-names associated with a
conditional variable. Chapter 4 discusses condition-names and the conditional
variable. Use level 88 only with Format 3 of the record-description-entry.
Level-88 entries can contain individual values, series of individual values, or a range
of values.
For example,

01 TEST-AREA PIC X.
88 TEST-VALUE-1 VALUE ' 1'
88 TEST-VALUE-2 VALUE ' 1' , '2'
88 TEST-VALUE-3 VALUE ' 1 ' THRU
88 TEST-VALUE-4 VALUE ' 1' THRU

First Edition 7-19

COBOL85 Reference Guide

The VALUE clause is required in a level-88 entry, and must be the only clause in the
entry. THRU and THROUGH are equivalent.
A level-88 entry must be preceded either by another level-88 entry, or by an
elementary item, called the conditional variable.
The condition-name can be qualified by the name of the conditional variable. You
can use a condition-name in the PROCEDURE DIVISION in place of a relational
condition, as discussed in Chapter 4. If you use a condition-name in the
PROCEDURE DIVISION, you must subscript it if its conditional variable is
subscripted. The type of literal in a condition-name VALUE clause must be
consistent with the data type of the conditional variable.
In the following example, PAYROLL-PERIOD is the conditional variable. The
PICTURE clause associated with it limits the value of the 88 condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
8 8 W E E K L Y V A L U E I S 1 .
88 SEMI-MONTHLY VALUE IS 2.
8 8 M O N T H L Y V A L U E I S 3 .

Using the above description, you can write the following condition-name test in the
PROCEDURE DIVISION:

IF MONTHLY PERFORM DO-MONTHLY.

An equivalent statement is

IF PAYROLL-PERIOD = 3 PERFORM DO-MONTHLY.

• level-number 66 identifies RENAMES entries, which are discussed later in this
chapter. Use level-number 66 only with Format 2 of the record-description-entry.

Example
The structure chart in Figure 7-1 illustrates the level concept. The chart represents the
structure of a weekly time card record. The record is divided into four major items: name,
employee number, pay period end date, and hours worked, with more specific information
included within name and pay period end date.
You can describe the time card record with DATA DIVISION entries having the following
level-numbers, data-names, and picture-definitions.

01 TIME-CARD.
05 NAME

10 LAST-NAME PICTURE X(18)
10 FIRST-INIT PICTURE x.
10 MIDDLE-INIT PICTURE X.

05 EMPLOYEE-NUM PICTURE 99999
05 PERIOD-ENDED.

10 MONTH PIC 99.
10 DAYY PIC 99.
10 YEAR PIC 99.

05 HOURS-WORKED PICTURE 99V99

7-20 First Edition

" >

' ■

FIGURE 7-1
Weekly Time Card Record

data-name or FILLER

The DATA DIVISION

Time
Card

■

I I " '

Hours
Worked

Q10166-1LA-9-0

A data-name specifies the name of the data-description-entry. FILLER specifies an
elementary item that you cannot refer to explicitly.

Format
I"data-name~\
Lfiller J

r
r

General Rules

1. Prime Extension: You can use FILLER to name a group item as well as an elementary
item.

2. You cannot refer to a FILLER item explicitly. However, you can use FILLER as a
conditional variable. Such use does not require explicit reference to the FILLER item,
but rather to its value.

3. You can use a VALUE clause with a FILLER item.
4. If you specify neither data-name nor FILLER, the data item is treated as though you

specified FILLER.

First Edition 7-21

COBOL85 Reference Guide

Example
01 INPUT-RECORD.

0 5 F I L L E R P I C 9 .
88 FULL-TIME VALUE 1.
8 8 PART-TIME VALUE 2.

0 5 N A M E P I C X < 4 0) .
0 5 F I L L E R P I C X (1 0) .
0 5 H O U R S P I C 9 9 .

In this example, you cannot change the FILLER items except by moving data into the group
item INPUT-RECORD. You cannot refer to the second FILLER item individually, but you
can test the first FILLER item with code such as the following:

IF FULL-TIME PERFORM 070-FULL-TIME.

BLANK WHEN ZERO
The BLANK WHEN ZERO clause sets an item to blanks when the item's value is zero.

Format
BLANK WHEN ZERO

Syntax Rules
1. You can use the BLANK WHEN ZERO clause only for an elementary numeric or

numeric edited item.
2. The item must be described, either implicitly or explicitly, as USAGE IS DISPLAY.

General Rules

1. The BLANK WHEN ZERO clause specifies that the data item be set to blanks when the
value is all zeros. This clause does not suppress leading zeros. Table 7-2 illustrates some
uses for this clause.

2. If you specify the clause for a numeric item, the compiler interprets the category of the
item as numeric edited.

3. Do not use an asterisk as the zero-suppression symbol in a picture-string with this clause.

")

" >

7-22 First Edition

TABLE 7-2
Examples: BLANK WHEN ZERO

b = blank.

EXTERNAL

The DATA DIVISION

Value Description of OUT-COST Result

0012.34 9999.99 BLANK WHEN ZERO 0012.34
0123.45 $9999.99 BLANK WHEN ZERO $0123.45
01.2345 $9999.99 BLANK WHEN ZERO $0001.23
0000.04 $$$$$.99 BLANK WHEN ZERO $.04
0000.00 $$$$$.99 BLANK WHEN ZERO bbbbbbb
0000.00 $$$$$.99 $.00
0000.00 ZZZZVZZ BLANK WHEN ZERO bbbbbb
0000.04 ZZZZVZZ BLANK WHEN ZERO
0000.00 ZZZZ.ZZ BLANK WHEN ZERO bbbbbbb
0000.04 zzzz.zz BLANK WHEN ZERO .04
0000.00 ZZZZ.99 BLANK WHEN ZERO bbbbbbb
0000.00 ZZZZ.99 .00

The EXTERNAL clause specifies that a data item is external. Such an item is also referred to
as a common block. The data item, including all subordinate data items, is available to every
program in the run unit that describes that data item. Use of the EXTERNAL clause saves
space within the programs of the run unit.
For a discussion of EXTERNAL file-description-entries, see the discussion of the
EXTERNAL clause earlier in this chapter.

Format
IS EXTERNAL

r
r

Syntax Rules
1. You can specify the EXTERNAL clause for data-description-entries in the WORKING-

STORAGE SECTION whose level-number is 01 or 77.
2. Do not specify the EXTERNAL clause and the REDEFINES clause in the same data-

description-entry.
3. Do not use the VALUE clause in any data-description-entry that includes or is subordinate

to an entry that includes the EXTERNAL clause. However, you can specify the VALUE
clause for condition-name entries associated with such data-description-entries.

Note
If you use SEG as the loader, ensure that all external items in the run unit have variable
names that are unique through the first eight characters.

First Edition 7-23

COBOL85 Reference Guide

General Rules

1. The data contained in the record named by data-name is external and can be accessed
and processed by any program in the mn unit that describes and, optionally, redefines it,
subject to the following general rule.

2. Within a mn unit, if two or more programs describe the same external data record, the
associated data-description-entries, including all subordinate data-names and data items
and their redefinitions, must be identical. However, a program that describes an external
record can contain a data-description-entry that redefines the complete external record.
This complete redefinition need not occur identically in other programs in the run unit.

Example
This example uses one program, CALLER.COBOL85, that calls a second program,
CALLED.COBOL85. Both use a file called PFMS-FILE, which is defined as EXTERNAL.
The called program does not need to refer to PFMS-FILE in the LINKAGE SECTION. The
called program writes one record, 'XX', to this file. After the main program calls the second
program, it checks that the PFMS-FILE file contains the record 'XX'.

OK, SLIST CALLER.COBOL85
ID DIVISION.
PROGRAM-ID. FILID.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PFMS-FILE ASSIGN PFMS.
DATA DIVISION.
FILE SECTION.
FD PFMS-FILE EXTERNAL VALUE OF FILE-ID 'MY-FILE'.
01 RECORD1 PIC XX.
01 PFMS-REC PIC XX.
PROCEDURE DIVISION.

CALL 'PFMS1'.
CLOSE PFMS-FILE.
OPEN INPUT PFMS-FILE.
READ PFMS-FILE END DISPLAY 'END-OF-FILE'.
IF PFMS-REC = 'XX' DISPLAY ' PASS' ELSE DISPLAY ' FAIL'.
CLOSE PFMS-FILE.
STOP RUN.

OK, SLIST CALLED.COBOL85
ID DIVISION.
PROGRAM-ID. PFMS1.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PFMS-FILE ASSIGN PFMS.
DATA DIVISION.
FILE SECTION.
FD PFMS-FILE EXTERNAL

VALUE OF FILE-ID IS 'MY-FILE'.

" >

7-24 First Edition

The DATA DIVISION

01 RECORD1 PIC XX.
PROCEDURE DIVISION.

OPEN OUTPUT PFMS-FILE.
MOVE 'XX' TO RECORD1.
WRITE RECORD1.
EXIT PROGRAM.

This program, when executed, produces the following results:

PASS

r

r

JUSTIFIED
The JUSTIFIED clause specifies right alignment of data within a field.

Format

{ I F 2 } ■» «

Syntax Rules
1. You can specify the JUSTIFIED clause only at the elementary level.
2. JUST is a valid abbreviation of JUSTIFIED.
3. Do not use the JUSTIFIED clause for data items described as numeric.
4. Do not use the JUSTIFIED clause for data items for which you specify editing.

General Rules

1. When you include the JUSTIFIED clause, values are stored right to left. In a MOVE
operation, if the sending field is shorter than the JUSTIFIED receiving field, space
filling occurs in the leftmost positions of the receiving field. If the sending field is
longer, the leftmost characters of the sending field arc truncated. If the sending field is
the same size as the JUSTIFIED receiving field, the result is a straight MOVE, including
spaces.

2. When you omit the JUSTIFIED clause, the standard alignment rules listed in Chapter 4
apply.

Example
Of the following two fields, Y is right justified and Z is left justified. Because the MOVE
statement involves a literal smaller than the picture definition of the data fields, the contents
of both Y and Z are appropriately justified.

r
First Edition 7-25

COBOL85 Reference Guide

01 Y PIC X(4) JUST RIGHT.
01 Z PIC X(4).

MOVE 'AB' TO Y Z.
EXHIBIT Y ' ' Z. terminal displays Y = bbAB Z = ABbb

where b = blank

OCCURS
The OCCURS clause permits you to define related sets of repeated data, such as tables,
arrays, and lists. The clause also provides required information for the application of
subscripts and indexes.

Format 1
OCCURS integer-2 TIMES

f f ASCENDING \ _____ TC _ . , _ _ , ._ ~|
1 DESCENDING] data-name-2 [, data-name-3] • • •

[INDEXED BY index-name-1 [, index-name-2] • • • 1

Format 2
OCCURS integer-1 JO integer-2 TIMES DEPENDING ON data-name-1

r f ASCENDING 1 tAT_t. T~ J ., r . 1
I DFSCFNDINT 1 data-name-2 [, data-name-3] • • •

[INDEXED BY index-name-1 [, index-name-2] • • •]

Syntax Rules
1. Do not use the OCCURS clause in a data-description-entry that

• Has a 66, 77, or 88 level-number
• Describes an item whose size is variable (that is, an item that includes a subordinate

item containing Format 2 of the OCCURS clause)

2. integer-1 must be greater than or equal to zero. If you use both integer-1 and integer-2,
integer-2 must be greater than integer-1. The maximum allowable table size is listed in
Appendix I.

3. You must define data-name-1 as an integer. If data-name-1 is signed, the value of data-
name-1 must be positive. You can describe data-name-1 within the record entry or
outside of it.

7-26 First Edition

The DATA DIVISION

4. data-name-2 must be the name of either the entry containing the OCCURS clause or an
entry subordinate to the entry containing the OCCURS clause, data-name-3 and any
additional data-names in the KEY IS phrase must be subordinate to the entry containing
the OCCURS clause.

5. The data-names in the KEY IS phrase must not contain an OCCURS clause, except
where data-name-2 is the subject of the entry.

6. Entries must not contain an OCCURS clause between the data-names in the KEY IS
phrase and the subject of the entry, except where data-name-2 is the subject of the entry.

7. All data-names used in the OCCURS clause can be qualified; however, they must not be
subscripted or indexed.

8. An INDEXED BY phrase is required if the subject of this entry, or an entry subordinate
to this entry, is to be referenced by indexing. The index-names identified by this phrase
are not defined elsewhere. Because index-names do not represent data, you cannot
associate them with any data record or refer to them in a USING phrase.

9. Each index-name must be unique within the program.
10. If you define the subject of the OCCURS clause as EXTERNAL, and you do not define

data-name-1 as EXTERNAL, data-name-1 inherits the EXTERNAL attribute. If you
define data-name-1 outside of the EXTERNAL variable occurrence data item, it must be
an 01 or 77 level item.

11. A data-description-entry that contains Format 2 of the OCCURS clause can be followed,
within that record description, only by data-description-entries that are subordinate to it.

12. In Format 2, the data item defined by data-name-1 must not fall within the range of the
first character position defined by the data-description-entry containing the OCCURS
clause and the last character position defined by the record-description-entry containing
that OCCURS clause.

General Rules

1. The OCCURS clause defines tables of repeating data items. When you use the OCCURS
clause, the data-name that is the subject of the entry, and any items subordinate to the
subject, must be referred to by subscripting or indexing, except when used with the
SEARCH verb.

2. Except for the OCCURS clause itself, all data description clauses associated with an
item containing an OCCURS clause apply to each occurrence of the item being
described.

3. The KEY IS phrase indicates that the repeated data is arranged in ascending or
descending order according to the values contained in data-name-2, data-name-3, and so
on. The rules for the evaluation of relation conditions, discussed in the section
Conditional Expressions in Chapter 4, determine the ascending or descending order. The
data-names are listed in their descending order of significance.

4. When you use the INDEXED BY phrase, an index is assigned to a table; index-name
identifies the individual occurrences of items in the table. For example, the following
code defines a table MONTH-TAB of 12 items, indexed by INDX.

First Edition 7-27

COBOL85 Reference Guide

05 MONTH-TAB OCCURS 12 TIMES
ASCENDING KEY MONTH-NO
INDEXED BY INDX.
1 0 M O N T H - N O P I C 9 9 .
10 MONTH-VALUE PIC XXX.

This code creates a storage area as shown in Figure 7-2.

MONTH-NO(1) MONTH-VALUE(I) MONTH-NO(12) MONTH-VALUE(12)

Bytes 1

• • •

1

FIGURE
A 12-ele

7-2
ment Table

56 58 60
Q10166-1LA-10-0

" >

5. You can refer to an individual item in the table by means of an index or subscript. Assuming
INDX and DATA-NM both have the value 4, you can refer to the item MONTH-NO of the
fourth element of MONTH-TAB in any of the following three ways:

MONTH-NO(4)
MONTH-NO(INDX)
MONTH-NO(DATA-NM)

6. You can modify an index-name only by the SET verb, the SEARCH verb, and the
PERFORM verb.

7. You can specify a maximum of eight indexes in an indexed reference.
8. The section Data Representation and Alignment in Chapter 4 describes the format of an

index-name. Its maximum value is listed in Appendix I.
9. When you omit the INDEXED BY phrase, you must use subscripting alone to refer to an

individual element within a table.
10. The number of occurrences of the subject entry is defined as follows:

• If you do not use the DEPENDING phrase, the value of integer-2 represents the
exact number of occurrences.

• If you use the DEPENDING phrase, the current value of the data item referenced by
data-name-1 represents the number of occurrences.

The DEPENDING phrase specifies that the subject of this entry has a variable number
of occurrences. The value of integer-2 represents the maximum number of occurrences ̂
and the value of integer-1 represents the minimum number of occurrences. Using the

7-28 First Edition

r/7© DATA DIVISION

DEPENDING phrase does not imply that the length of the subject of the entry is
variable, but that the number of occurrences of the subject is variable.
The value of data-name-1 must fall within the range integer-1 through integer-2. The
contents of data items whose occurrence numbers exceed the value of data-name-1 are
unpredictable.

Note
If you specify the -RANGE or -RANGE.NONFATAL compiler option, COBOL85
checks the value of data-name-1 each time the program refers to the associated variable
occurrence data item.

11. When you refer to a group data item that contains a variable occurrence data item, the
part of the table area used in the operation is determined as follows:
• If the data item referenced by data-name-1 is outside the group, only that part of the

table area specified by the value of data-name-1 at the start of the operation is used.
• If the data item referenced by data-name-1 is included in the same group, and the

group data item is referenced as a sending item, only that part of the table area
specified by the value of data-name-1 at the start of the operation is used. If the
group is the receiving item, the maximum length of the group is used.

12. When you refer to a record or group item that contains an OCCURS DEPENDING ON
clause while using the Source Level Debugger (DBG), the value of the OCCURS
DEPENDING ON item at the start of statement execution determines the part of the
table that is defined.

Example
The following is an example of an FD entry for a file of variable-length records. The record
description contains an OCCURS DEPENDING ON clause, which allows from zero to
twenty-five students to be enrolled in each course. Figure 7-3 illustrates how data is stored in
such a file.

FD COURSE-FILE
RECORD CONTAINS 28 TO 428 CHARACTERS.

01 COURSE-REC.
05 COURSE-ID PIC X(06).
05 COURSE-TITLE-SHORT PIC X(10).
05 INSTRUCTOR-NAME-SHORT pic x(io).
05 NUMBER-OF-STUDENTS PIC 9(04) COMP.
05 STUDENT-RECORD OCCURS 0 TO 25 TIMES

DEPENDING ON
NUMBER-OF-STUDENTS.

10 STUDENT-ID PIC 9(06) .
10 STUDENT-NAME-SHORT PIC X(10).

First Edition 7-29

COBOL85 Reference Guide

Record Number 1

ENG100 ENG COMP 1 SMITH 00

Record Number 2

HIS100 AM HIST 1 JONES 02 123456 THOMAS 654321 JOHNSON

Record Number 3

MUS100 MUSIC APP WILSON 01 654321 JOHNSON

Q10166-1LA-11-0

FIGURE 7-3
Variable-length Data Storage

PICTURE
The PICTURE clause describes the general characteristics and editing requirements of an
elementary item.

Format

f PICTURE!
\ p i c J IS character-string

Syntax Rules
1. You can specify a PICTURE clause only at the elementary item level.
2. A PICTURE character-string consists of certain allowable combinations of characters in

the COBOL85 character set used as symbols. The allowable combinations determine the
category of the elementary item.

3. The maximum number of characters allowed in a PICTURE character-string is 32. In the
shorthand notation X(n), the repeat integer n must be within the range of 1 through 32767.

4. You must specify the PICTURE clause for every elementary item except binary and
floating-point items. The PICTURE clause is optional for items with COMP or BINARY
usage. (The default is PICTURE S9999.) The PICTURE clause is not allowed with items
whose usage is COMPUTATIONAL-1, COMPUTATIONAL-2, or INDEX.

5. PIC is an abbreviation for PICTURE.
6. A PICTURE character-string must include at least one of the characters Z A * X 9 or at

least two consecutive appearances of the characters + - or the currency symbol. You can
break a PICTURE character-string so that part is on the continuation line. A hyphen in
the indicator area indicates that the string has no blank before the continued part. If you
omit the hyphen, then a blank is inserted into the PICTURE character-string before the
continued part, which creates an erroneous PICTURE character-string.

7-30 First Edition

*)

The DATA DIVISION

General Rules
The following general rules govern the PICTURE clause as it relates to

• Data categories
• Data item size
• Symbol functions

Data Categories: You can define five categories of data with a PICTURE clause:
alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric edited. Their
PICTURE character-strings have the following restrictions.

• Alphabetic: The PICTURE character-string can contain only the characters A and B.
Contents of the data field so described are restricted to any combination of the letters of
the English alphabet and the COBOL85 space character. See Example 3 of Table 7-3.

TABLE 7-3
Examples of PICTURE Clauses and Conversions

Example Value Nonedited PICTURE Stored as

1 37 P999
.5 P999

.05 P999 .05
2 37 999PP

3700 999PP 3700

Example Value Edited PICTURE Prints as

3 JDOE ABAAAA J DOE
4 JDOE XBXXXX JDOE
5 113113 XXXOXXX 1130113
6 459243333 XXX/XX/XXXX 459/24/3333
7 10000 99,999 10,000
8 9999 999.9 999.0
9 999 999.9 999.0

10 +5500 +9999 +5500
11 -5500 +9999 -5500
12 +5500 9999CR 5500
13 +5500 9999DB 5500
14 +5500 9999+ 5500+
15 +5500 ZZZ.99 500.00
16 123 $$$.$$ $23.00
17 123 SSS.99 S23.00
18 003 5>i»o.3>a> $3.00
19 000 ooo oo

ij v^ (jj, vj) i_p

20 00345 sss.ss $45.00

r
r First Edition 7-31

COBOL85 Reference Guide

TABLE 7-3
Examples of PICTURE Clauses and Conversions - Continued

Example Value Edited PICTURE Prmtt „_■
21 0000 ZZ,ZZZ
22 00345 ZZ,ZZZ 345
23 0000 ^J) SF "f^ -p *n t^

24 0000 $ZZZZZ
25 00 $***.99 $***.00
26 00 ZZ.ZZZ.99 .00
27 0.03 ZZZZZZZ .03
28 0.00 ZZ.ZZZ.ZZ

• Numeric: The PICTURE character-string can contain only the symbols 9, P, S, and V.
You can represent 1 through 18 digit positions with this PICTURE character-string: the
contents of this field are restricted to a combination of the digits 0 through 9, plus an
optional sign.

• Alphanumeric: The PICTURE character-string is a combination of the data description
characters X, A, or 9, and the item is treated as if the string contained all Xs. Do not
specify alphanumeric PICTURE character-strings with all 9s or all As. Item contents
can be any character from the computer's ASCII character set defined in Table B-3.

• Alphanumeric edited: The PICTURE character-string is restricted to certain
combinations of the following symbols: A, X, 9, B, 0, /. The section Symbol Functions,
below, discusses allowable combinations. Contents of the field can be any character
from the computer's ASCII character set defined in Table B-3.

• Numeric edited: The PICTURE character-string is a certain combination of the editing
symbols Z . CR DB , + * B 0 - / 9 V P, and the currency symbol. It must contain at
least one of the editing symbols Z . CR DB , + * B 0 - /. Field contents must be
numerals. The maximum number of digit positions is 18.

Data Item Size: The size of an elementary item (the number of character positions
occupied by the item in standard data format) is determined by the number of symbols that
represent character positions, as listed below.
An integer enclosed in parentheses, following the symbols AX9PZ*B/0 + -orthe
currency symbol, indicates the number of consecutive occurrences of that symbol. This is the
repeat integer.

Symbol Functions: Symbols used in a PICTURE character-string to define an
elementary item have the following functions:

Symbol Function
A Each A represents a character position containing cither a letter of the alphabet in upper

case or lowercase, or a space.
B Each B represents a character position into which a space character is inserted. The rules

for simple insertion editing, listed in the next section, govern its use.

7-32 First Edition

T/7© DATA DIVISION

P Each P indicates an assumed decimal scaling position. The P specifies the location of an
assumed decimal point that does not appear in the data item. The P is not counted in the
size of the data item, but is counted in determining the maximum number of digit posi
tions in numeric edited items or numeric items.
In conversions, each digit position described by a P is considered to contain the value
zero. The assumed decimal point is considered to be to the left of the P that is leftmost
in a string, or to the right of Ps that are rightmost in a string. Thus the effect of each P
is to divide or multiply a data item by one power of ten.
The scaling position character P can appear only to the left or right of the other charac
ters in the string, except that the sign character S and the assumed decimal point V can
appear to the left of a leftmost string of Ps. Because the character P implies an assumed
decimal point, the symbol V is redundant as either the leftmost or rightmost character
within such a PICTURE description.
The character P and the insertion character period (.) cannot both occur in the same
character-string.
See the two nonedited examples in Table 7-3.

S The character-string symbol S indicates the presence of a sign in a data item, but
implies nothing about the actual format or location of the sign in storage.
The symbol S is not counted in determining the size of the elementary item, unless the
entry is subject to a SIGN clause with the SEPARATE qualifier. (See SIGN.)
When you use the S symbol, you must write it as the leftmost character in a PICTURE
character-string.

V The character V indicates the position of an assumed decimal point. Because a numeric
item cannot contain an actual decimal point, an assumed decimal point is used to pro
vide information concerning the alignment of items involved in computations. The V
does not represent a character position and, therefore, is not counted in the size of the
item. Only one V is permitted in any single picture.

X Each X represents a character position that can contain any allowable character from the
computer's character set.

Z Each Z character is a replacement character that represents a leading numeric position
that is replaced by a space when its contents are zero. Each Z is counted in the size of
the item. The rules for suppression and replacement editing, listed in the next section,
govern its use.

9 Each 9 in a PICTURE character-string represents a character position that contains a
numeral and is counted in the size of the item.

0 Each zero in the PICTURE character-string represents a character position into which
the numeral 0 is inserted. The 0 is counted in the size of the item. The rules for simple
insertion editing, listed in the next section, govern its use.

/ Each slash mark in the PICTURE character-string represents a character position into
which the slash character is inserted. The slash is counted in the size of the item. The
rules for simple insertion editing, listed in the next section, govern its use.
The comma character specifies insertion of a comma between digits. Each such charac
ter is counted in the size of the data item, but does not represent a digit position. When
DECIMAL-POINT IS COMMA is specified, the explanations for period and comma are
reversed to apply to comma and period, respectively. The rules for simple insertion edit
ing, listed in the next section, govern its use.

First Edition 7-33

COBOL85 Reference Guide

A period character in a PICTURE character-string is an editing symbol representing the
decimal point for alignment purposes. The character also serves to indicate the position
for decimal point insertion. The rules for special insertion editing, listed in the next sec
tion, govern its use.
Numeric character positions to the right of an actual decimal point in a PICTURE
character-string must consist of characters of one type. The period character is counted
in the size of the item. When DECIMAL-POINT IS COMMA is specified, the explana
tions for period and comma are understood to apply to comma and period, respectively.
The period character can be the last character in the PICTURE character-string.

+ These symbols are used as editing sign control symbols and represent the character posi
tion into which the editing sign control symbol is placed. The symbols are mutually

_, exclusive in any one PICTURE character-string, and each character used in the symbol
is counted in determining the size of the data item. That is, CR and DB require two

DB character positions each; + and - require one character position each. The rales for fixed
insertion editing and floating insertion editing, listed in the next section, govern their
use.

* Each asterisk in a PICTURE character-string is a replacement character. Leading zeros
in the affected item are suppressed and replaced by asterisks. Each asterisk is counted in
the size of the item. The rules for suppression and replacement editing, listed in the next
section, govern its use.

$ The dollar sign or other currency symbol represents a character position into which the
cs currency symbol is placed. The currency symbol is the dollar sign or the character speci

fied in the CURRENCY SIGN clause. It is counted in the size of the item. The rules for
floating insertion editing, listed in the next section, govern its use.

Editing Rules
The rules below define the ways of editing a data field, that is, of adding, changing, or
suppressing certain characters in it. Examples appear in Table 7-3.

1. The maximum length of an edited field is 255 characters. The maximum length of an
edited PICTURE character-string is 32 characters.

2. The PICTURE clause provides two methods for editing: character insertion, and
character suppression and replacement.
The four types of insertion editing are

Simple insertion
Special insertion
Fixed insertion
Floating insertion

The two types of suppression and replacement editing are

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing that you can perform upon an item depends upon the category to
which the item belongs, as defined in Chapter 4. Table 7-4 specifies which type of
editing you can perform upon a given category.

7-34 First Edition

The DATA DIVISION

r

r
r

TABLE 7-4
Categories of Data and Editing

Category of Data Type of Editing Allowed

Alphabetic Simple insertion (B only)

N u m e r i c N o n e

A l p h a n u m e r i c N o n e

Alphanumeric edited Simple insertion (0 B and /)

Numeric edited All, subject to rules for fixed insertion
editing

3. Simple insertion editing uses the four symbols B 0 , / as insertion characters. The
insertion characters are counted in the size of the item and represent the position in the
item into which the character is inserted.
If the insertion character comma (,) is the last symbol in the PICTURE character-string,
the PICTURE clause must be the last clause of the data description entry and must be
immediately followed by the separator period. This results in the combination ,.
appearing in the data-description-entry. If you use the DECIMAL-POINT IS COMMA
clause, this results in two consecutive periods appearing in the data-description-entry.
See examples 4 through 7 for edited fields in Table 7-3.

4. Special insertion editing refers to decimal point insertion. The period is the insertion
character. It also represents the decimal point for alignment purposes. The period is
counted in the size of the item. Do not use the assumed decimal point, represented by the
symbol V, and an actual decimal point, represented by the insertion character, in the
same PICTURE character-string.
If the insertion character is the last symbol in the PICTURE character-string, the PICTURE
clause must be the last clause of that data-description-entry and must be immediately
followed by the separator period. This results in two consecutive periods appearing in the
data-description-entry. If you use the DECIMAL-POINT IS COMMA clause, this results in
the combination ,. appearing in the data-description-entry. If you use special insertion
editing, the insertion character appears in the item in the same position as in the PICTURE
character-string. See examples 8 through 10 for edited fields in Table 7-3.

5. Fixed insertion editing uses the currency sign and editing sign control symbols as
insertion characters. The four editing sign control symbols are + - CR DB.
Use only one currency symbol and only one editing sign control symbol in a given
PICTURE character-string. When the symbols CR or DB are used, they represent two
character positions in determining the size of the item. They must represent the rightmost
character positions to be counted in the size of the item. If you use the symbol + or -, it must
be either the leftmost or rightmost character position to be counted in the size of the item.
The currency symbol must be the leftmost character position to be counted in the size of the
item, except that it can be preceded by either a + or a - symbol. If you use fixed insertion
editing, the insertion character occupies the same character position in the edited item that it
occupies in the PICTURE character-string. Editing sign control symbols produce the
results shown in Table 7-5, depending upon the value of the data item.

First Edition 7-35

COBOL85 Reference Guide

TABLE 7-5
Results of Sign Control Symbols in Editing

Result

Editing Symbol in
picture-string

Data Item
Positive or Zero

Data Item
Negative

+

CR
DB

space
2 spaces
2 spaces

CR
DB

See examples 11 through 14 for edited fields in Table 7-3.
6. Floating insertion editing uses floating insertion characters. These are the currency

symbol and the editing sign control symbols + or -. As floating insertion characters,
these are mutually exclusive in a given PICTURE character-string. These characters
cause leading zeros to be replaced with blanks, except for the leftmost zero, which is
replaced with the insertion character.
A floating string is a leading, continuous series of $ + or -, or a string composed of one
such character interrupted by one or more insertion commas and/or a decimal point. For
example,

$$,$$$.$$$
++++

+(8).++
$$,$$$.$$$

Indicate floating insertion editing in a PICTURE character-string by including in it a
string of at least two of the floating insertion characters. This floating string can contain
any of the fixed insertion symbols. The leftmost character of the floating insertion string
represents the leftmost limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightmost limit of the floating symbols in
the data item.
The second floating character from the left represents the leftmost limit of the numeric
data that can be stored in the data item. Nonzero numeric data can replace all the
characters to the right of this limit.
Indicate floating insertion editing in a PICTURE character-string in one of the
following ways:
• Represent any or all of the leading numeric character positions on the left of the

decimal point by the insertion character.
• Represent all of the numeric character positions in the PICTURE character-string by

the insertion character.

See examples 15 through 16 for edited fields in Table 7-3.

7-36 First Edition

The DATA DIVISION

If the insertion characters are only to the left of the decimal point in the PICTURE
character-string, a single floating insertion character is placed in the character position
immediately preceding the first nonzero digit in the data item. If all data item digits to
the left of the decimal are zero, the floating insertion character is placed in the character
position immediately preceding the decimal point. The character positions preceding the
insertion character are replaced with spaces.
If you represent all numeric character positions in the PICTURE character-string by the
insertion character, the result depends on the value of the data. If the value is zero, the
entire data item contains spaces. If the value is not zero, the result is the same as if the
insertion character were only to the left of the decimal point. See examples 17 through
19 for edited fields in Table 7-3.
To avoid truncation, the minimum size of the PICTURE character-string for the
receiving data item must equal the sum of the number of characters in the sending data
item, plus the number of nonfloating insertion characters being edited into the receiving
data item, plus one for the floating insertion character. That is, to define n digit
positions, a floating string must contain n + 1 occurrences of $ or + or -.
When a comma appears to the right of a floating string, the comma is not retained if no
digits are retained before il. Table 7-6 provides examples.

TABLE 7-6
Commas in Floating Strings

Picture-string Numeric Value Developed Item

SSS999
-,—,999
SSSSSS

14
-456

14

$014
-456

$14

A floating string need not constitute the entire PICTURE character-string of a numeric
edited item. However, the characters from the right of a decimal point to the end of the
PICTURE character-string, excluding the fixed insertion characters +, -, CR, DB (if
present), are subject to the following restrictions:

• Only one type of digit position character can appear. That is, the three characters Z *
and 9 are mutually exclusive, and the floating-string digit position characters $ + and
- are mutually exclusive.

• If you represent any of the numeric character positions to the right of a decimal point
by + or - or $ or Z, then you must represent all of the numeric character positions in
the PICTURE character-string by the same character.

• No symbol can precede a floating string except + or -.

7. Suppression and replacement editing includes two types: zero suppression and
replacement with spaces, and zero suppression and replacement with asterisks.
Floating insertion editing and editing by zero suppression and replacement are mutually
exclusive in a PICTURE clause.
Use the mutually exclusive suppression symbols Z or * in a PICTURE character-string
to indicate the suppression of leading zeros in numeric character positions. Each
suppression symbol is counted in determining the size of the item. If you use Z, the

First Edition 7-37

COBOL85 Reference Guide

replacement character is the space. If you use *, the replacement character is the asterisk.
Any of the characters BO,/ embedded in the string of suppression symbols, or to the
immediate right of this string, is part of the string. See examples 20 through 24 for
edited fields in Table 7-3.
Represent zero suppression in a PICTURE character-string in one of the following
ways:

• Represent any or all leading numeric character positions to the left of the decimal
point by suppression symbols.

• Represent all numeric character positions in the PICTURE character-string by
suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any leading zero
in the data that corresponds to a symbol in the string is replaced by the replacement
character. Suppression terminates either at the first nonzero digit in the data represented
by the suppression symbol string, or at the decimal point, whichever is first.
If all numeric character positions in the PICTURE character-string are represented by
suppression symbols, and the value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal point. If the value is zero and
the symbol is Z, the entire data item contains spaces. If the value is zero and the symbol
is *, the entire data item (except for the actual decimal point) contains asterisks. See
examples 25 through 27 for edited fields in Table 7-3.

8. The following symbols can appear only once in a given PICTURE character-string: S V
. CR DB.

REDEFINES
The REDEFINES clause allows you to describe the same computer storage area with
different data-description-entries. The clause is useful in table handling.

Format

level-number |*fT^1 C"7~| [; REDEFINES data-name-2]

Note
level-number, data-name-1, and the semicolon are not part of the REDEFINES clause, but are
included to show the context.

Syntax Rules
1. The REDEFINES clause is optional; when you specify it, it must immediately follow

data-name-1 or FILLER. The entry identified by data-name-1 must follow the entry
identified by data-name-2.

2. level-numbers of data-name-1 and data-name-2 must be identical, but must not be 66 or

7-38 First Edition

The DATA DIVISION

3. Prime Extension: The entry for data-name-1 can be separated from data-name-2 by
other data descriptions of the same level provided that the number of character positions
in data-name-2 is greater than or equal to the number of character positions in data-
name-1. Otherwise, no restrictions apply to the lengths of the two entries.

4. Do not use the REDEFINES clause in level 01 entries in the FILE SECTION.
5. The data-description-entry for data-name-2 can contain a REDEFINES clause.
6. The data-description-entry for data-name-2 must not contain an OCCURS clause, and

data-name-1 must not be subordinate to an entry containing an OCCURS clause.
7. data-name-2 can be qualified but not subscripted.
8. The entries for data-name-1 and data-name-2 cannot be separated by entries with lower

level-numbers. In other words, they must be in the same group.

General Rules

1. Redefinition starts at data-name-1 and ends when a level-number less than or equal to
the level-number of data-name-1 is encountered. In the following example, redefinition
of FIELD-1 by FIELD-2 ends when FIELD-3 is encountered.

0 5 F I E L D - 1 P I C T U R E A (3) .
05 FIELD-2 REDEFINES FIELD-1.

1 0 I T E M - A P I C T U R E A .
1 0 I T E M - B P I C T U R E A A .

0 5 F I E L D - 3 P I C T U R E X .

Figure 7-4 represents the projection of these two data-names on one storage area through
the REDEFINES clause.

r

r

FIELD-0 FIELD-1 FIELD-3 FIELD-4
QW166-1L4-12-0

FIGURE 7-4
A Storage Area Redefined

2. The entries that specify the new description of the area must not contain VALUE clauses
except in condition-name entries.

3. You can redefine to a depth greater than one level. Thus, the nested REDEFINES
outlined below is valid:

First Edition 7-39

COBOL85 Reference Guide

0 1 F I E L D - A P I C X (1 0) .
01 FIELD-B REDEFINES FIELD-A.

0 5 F I E L D - C P I C X (5) .
05 FIELD-D REDEFINES FIELD-C.

10 FIELD-E1 PIC X(3).
10 FIELD-E2 PIC X(2).

0 5 F I E L D - F P I C X (5) .

4. When you assign a value to one data-name for a redefined storage area, all data-names
for that area have the same value.

RENAMES
The RENAMES clause allows you to define alternative, possibly overlapping, groups of
elementary items.

Format

. Vdata-name-3

Note
level-number 66, data-name-1, and the semicolon are not part of the RENAMES clause, but
are included to show the context.

Syntax Rules
1. You can write any number of RENAMES entries for a logical record. They must all

immediately follow the last entry of that record.
2. data-name-1 cannot be used as a qualifier but can itself be qualified by the 01 or FD

entries, data-name-2 and data-name-3 can neither contain an OCCURS clause, nor be
subordinate to an entry that has an OCCURS clause in its data-description-entry.

3. data-name-2 and data-name-3 must be the names of elementary items or groups of
elementary items in the same record and cannot have the same data-name.

4. A level-66 entry cannot rename an entry having level-number 01, 66, 77, or 88.
5. The beginning of the area described by data-name-3 must not be to the left of the

beginning of the area described by data-name-2. The end of the area described by data-
name-3 must be to the right of the end of the area described by data-name-2. Therefore,
data-name-3 cannot be subordinate to data-name-2.

6. data-name-2 and data-name-3 can be qualified.
7. The words THRU and THROUGH are equivalent.

7 - 4 0 F i r s t E d i t i o n " ^ \

SIGN

r
r

The DATA DIVISION

General Rules

1. When you specify data-name-3, data-name-1 is a group item that includes all elementary
items starting with data-name-2 (if that is an elementary item) or the first elementary
item in data-name-2 (if data-name-2 is a group item), and concluding with data-name-3
(if that is an elementary item) or the last elementary item in data-name-3 (if data-name-3
is a group item).

2. When you do not specify data-name-3, data-name-2 can be cither a group or an
elementary item. When data-name-2 is a group item, data-name-1 is treated as a group
item, and when data-name-2 is an elementary item, data-name-1 is treated as an
elementary item.

Example
In the following example, the 66-level name VENDOR-ENTRY establishes a new group
item from a part of the elements in the record ENTRY-IMAGE. Note that in this example,
RENAMES redefines two level-10 items followed by three lcvel-05 items, while
REDEFINES would have redefined only one elementary or one group item.

01 ENTRY-IMAGE.
05 ENTRY-MONTH.

1 0 D Y P I C 9 9 .
1 0 M O P I C 9 9 .
1 0 Y R P I C 9 9 .

0 5 E N T R Y - V E N D O R P I C X (2 0) .
0 5 E N T R Y - A C C T - N O P I C 9 9 9 .
0 5 E N T R Y - A M O U N T P I C 9 (5) V 9 9 .

66 VENDOR-ENTRY RENAMES MO THRU ENTRY-AMOUNT.

The SIGN clause specifies the position and the mode of representation of the operational sign
when you need to describe these properties explicitly.

Format

[SIGN IS] f TRAILING I tSEPARATE CHARACTER]

Syntax Rules
1. Specify the SIGN clause only for a numeric data item whose PICTURE character-string

contains the character S, or for a group item containing at least one such elementary
item. If the PICTURE character-string does not contain an S, the item is considered
unsigned (capable of storing only absolute values), and the SIGN clause is prohibited.

2. You must explicitly or implicitly describe as USAGE IS DISPLAY numeric data items
to which the SIGN clause applies.

3. If you specify the CODE-SET clause in a file-description-entry, you must describe with
the SIGN IS SEPARATE clause any signed numeric item associated with that file.

First Edition 7-41

COBOL85 Reference Guide

General Rules

1. When you specify S in a PICTURE character-string, but do not include the SIGN clause
in an item's description, the default is SIGN IS TRAILING.

2. If you do not specify the optional SEPARATE CHARACTER phrase, then

• The operational sign is presumed to be associated with the leading (or trailing) digit
position of the elementary numeric data item.

• The character S in the PICTURE character-string is not counted in determining item
size.

3. If you include the SEPARATE CHARACTER phrase, then

• The operational sign is presumed to be the leading (or trailing) character position of
the elementary numeric data item; this character position is not a digit position.

• The letter S in a PICTURE character-string is counted in determining the size of the
item (in terms of standard data format characters).

• The operational signs for positive and negative are the standard data format
characters + and -, respectively.

4. Every numeric data-description-entry whose PICTURE character-string contains the
character S is a signed numeric data-description-entry. If a SIGN clause applies to such
an entry and conversion is necessary for purposes of computation or comparisons,
conversion takes place automatically.

5. Table 7-7 depicts sign representations for the various SIGN clause options.
6. If you specify a SIGN clause in a group item subordinate to a group item for which you

specify a SIGN clause, the SIGN clause you specify in the subordinate group item takes
precedence for that subordinate group item.

7. If you specify a SIGN clause in an elementary numeric data-description-entry
subordinate to a group item for which you specify a SIGN clause, the SIGN clause you
specify in the subordinate elementary numeric data-description-entry takes precedence
for that elementary numeric data item.

TABLE 7-7
Sign Representation

SIGN Clause Sign Representation

TRAILING Embedded in rightmost byte

LEADING Embedded in leftmost byte

TRAILING SEPARATE Stored in separate rightmost byte

LEADING SEPARATE Stored in separate leftmost byte

See the section Data Representation and Alignment in Chapter 4 for a detailed description of
SIGN formats and conventions.

~ >

'

7-42 First Edition

The DATA DIVISION

SYNCHRONIZED

*

~

USAGE

r

The SYNCHRONIZED clause specifies the alignment of an elementary item on its natural
addressing boundaries in the computer's memory.

Format
f SYNCHRONIZED \ ["LEFT ~|
\ S Y N C J L R I G H T j

Syntax Rules
1. SYNC is an abbreviation for SYNCHRONIZED.
2. COBOL85 treats the SYNCHRONIZED clause as a comment.
3. COBOL85 automatically aligns group items and elementary items of certain data types.

Level-77 and level-01 items are always aligned on halfword (16-bit) boundaries. Group
items with level-numbers greater than 01 (subgroups) are aligned on halfwords if they
contain fields that require such alignment (COMP, BINARY, COMP-1, and COMP-2
fields). The data map created with the -MAP compiler option flags items that are aligned
by the compiler. In addition, the -SLACKBYTES compiler option issues an
observational diagnostic for each compiler-aligned item.
See the section Data Representation and Alignment in Chapter 4.

The USAGE clause describes the form in which the compiler represents numeric data.

Format

[USAGE IS] <

fBINARY
COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3
DISPLAY
INDEX
PACKED-DECIMAL

r
First Edition 7-43

COBOL85 Reference Guide

Syntax Rules
1. COMP, COMP-1, COMP-2, and COMP-3 are abbreviations for COMPUTATIONAL,

COMPUTATIONAL-1, COMPUTATIONAL-2, and COMPUTATIONAL-3, respect
ively.

2. Prime Extensions: COMPUTATIONAL-1, COMPUTATIONAL-2, and COMPUTATIONAL-3
are Prime extensions to ANSI COBOL.

3. If you specify USAGE as COMPUTATIONAL-1, COMPUTATIONAL-2, or INDEX,
you cannot use the PICTURE clause.

4. An elementary data item whose declaration contains, or an elementary data item
subordinate to a group item whose declaration contains, a USAGE clause specifying
BINARY, COMPUTATIONAL, COMPUTATIONAL-3, or PACKED-DECIMAL must
be declared with a PICTURE character-string that describes a numeric item (that is, a
PICTURE character-string that contains only the symbols P, S, V, and 9).

5. The USAGE IS INDEX clause describes an elementary item called an index data item.
You can refer explicitly to an index data item only in a SEARCH or SET statement, a
relation condition, the USING phrase of a PROCEDURE DIVISION header, or the
USING phrase of a CALL statement.

6. You cannot use the SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK
WHEN ZERO clauses to describe group or elementary items that you describe with the
USAGE IS INDEX clause.

General Rules

1. The USAGE IS BINARY or COMPUTATIONAL clause defines a binary item.
COMPUTATIONAL-1 defines a single-precision floating-point number. COMPUTA
TIONAL-2 defines a double-precision floating-point number. The USAGE IS
PACKED-DECIMAL or COMPUTATIONAL-3 clause defines a packed-decimal item.
INDEX defines a binary item to be used for referencing tables. DISPLAY defines an
item represented in external decimal format.
The section Data Representation and Alignment in Chapter 4 discusses these items and
their allowable PICTURE clauses. Also, the section SYNCHRONIZED, above, discusses
alignment of COMP, BINARY, COMP-1, and COMP-2 items.

2. You can write the USAGE clause at any level. If you write the USAGE clause at a group
level, it applies to each item in the group, including the elementary items within
subgroups. The USAGE clause of an elementary item or subgroup cannot contradict the
USAGE clause of a group item to which it belongs.

3. A COMPUTATIONAL, BINARY, COMPUTATIONAL-1, COMPUTATIONAL-2,
COMPUTATIONAL-3, or PACKED-DECIMAL item can represent a value to be used
in computations; therefore, the item must be numeric. When you specify one of these
usages for a group item, only the elementary items in that group can be used in
computations.

4. If you do not specify the USAGE clause, the system default is DISPLAY. You can use
numeric display items in computations.

5. Prime Extension: If you specify USAGE as COMPUTATIONAL or BINARY for an
item, and you do not include a PICTURE clause for that item, the compiler assumes a
PICTURE of S9999 (16-bit signed binary integer).

7-44 First Edition

VALUE

r

r

T/je DATA DIVISION

6. COMP-1 and COMP-2 are intended for use in calling certain PRIMOS subroutines that
require floating-point (real) arguments. They are also for use in scientific calculations
that require a large range at the expense of absolute decimal precision.
Use COMP, BINARY, PACKED-DECIMAL, and COMP-3 in most decimal
calculations. COMP and BINARY allow the greatest efficiency both in storage space
and in speed of calculations for integers. COMP-3 and PACKED-DECIMAL are more
often used to save file and memory space. You can also use COMP and BINARY to
specify scaling positions (for example, 99V99). However, such use may result in runtime
inefficiency.
DISPLAY is the only usage allowed for alphabetic characters and symbols. For
numbers, DISPLAY is allowed in calculations but is less efficient than the other usages.
INDEX is allowed only for a value to be used as the index to a table.
If you mix any of these data types together in calculations, such a mixed calculation is
allowed, but often at the expense of either precision or efficiency. For details, see the
section Data Representation and Alignment in Chapter 4.

7. An index data item contains a value that must correspond to an occurrence number of a
table element. The elementary item cannot be a conditional variable. If you describe a
group item with the USAGE IS INDEX clause, the elementary items in the group are all
index data items. The group itself is not an index data item, and you cannot use it in the
SEARCH or SET statement or in a relation condition.

8. An index data item can be part of a group that you refer to in a MOVE or input-output
statement, in which case no conversion takes place.

9. The format of the index data item is described in the section Data Representation and
Alignment in Chapter 4. The maximum value of an index data item is listed in Appendix I.

The VALUE clause defines the value of constants, the initial values of WORKING-
STORAGE items, and the values associated with a condition-name.

Format 1
VALUE IS literal

Format 2

f VALUE IS Xiu ii ff THROUGH 1 .., , ,~]
\VAUjES ARE / ^^ {tHRU J hteral'2J

, literal-3 f THROUGH "]
I T H R U J

literal-4

Syntax Rules
1. The words THROUGH and THRU are equivalent.

First Edition 7-45

COBOL85 Reference Guide

2. Do not use the VALUE clause in a data-description-entry that contains a REDEFINES
clause, or that is subordinate to such an entry.

3. You can use a signed numeric literal in a VALUE clause only if the associated
PICTURE character-string is a signed numeric item.

4. Numeric literals in a VALUE clause must have a value within the range of values
indicated by the PICTURE clause, and must not have a value that would cause truncation
of nonzero digits.
Nonnumeric literals in a VALUE clause must not exceed the size indicated by the
PICTURE clause.

5. The type of literal allowed in a VALUE clause depends on the type of data item, as
specified in the PICTURE or USAGE clauses. For edited items, you must specify values
as nonnumeric literals. A type conflict arises, producing a compile time error, if a
figurative constant or literal is not compatible with the PICTURE clause. For example,

PICTURE 9 VALUE 'A'

produces a type conflict error, because 'A' is an alphabetic character and PICTURE 9
specifies a numeric item. Also, a size conflict produces a compile time error. For
example,

PICTURE X(2) VALUE 'ABCD'

is invalid. The compiler issues a warning and truncates 'ABCD' to 'AB'.
6. Do not specify a VALUE clause in the FILE SECTION of the DATA DIVISION except

in level-88 condition-name entries.
7. Edited elementary items with VALUE clauses are not initialized with their editing

characteristics. For example,

PICTURE ZZ,ZZ9.99 VALUE ZERO

appears as all zeros with no suppression. However, a MOVE of ZERO to the data item
achieves edited results.
For an edited elementary item, you must express values in a VALUE clause as
nonnumeric literals. For example,

PICTURE ZZ,ZZ9.99 VALUE " 123.00"

General Rules

1. The VALUE clause must not conflict with other clauses in the data description of the
item or in a data description within the hierarchy of the item.

2. Initialization occurs independently of any BLANK WHEN ZERO or JUSTIFIED clause
that you specify.

3. You can specify the VALUE clause at the group level in the form of a correctly sized
nonnumeric literal, or a figurative constant.

4. You can specify a figurative constant instead of a literal in both Format 1 and Format 2.
5. Format 1 is required to define an initial value for a data item or a constant.

7-46 First Edition

The DATA DIVISION

6. Use Format 2 only for condition-name entries (level-88 items). The VALUE clause and
the level-88 condition-name itself are the only two items permitted in the entry. The
characteristics of a condition-name are implicitly those of its conditional variable.
Wherever you use the THRU phrase, literal-1 must be less than literal-2, literal-3 less
than literal-4, and so on.
Level-88 specifications can contain individual values, series of individual values, a range
of values, or a series of ranges of values. (See also level-number.)

1. Rules governing the VALUE clause differ in the respective sections of the DATA
DIVISION as follows:

• In the FILE SECTION, use the clause only in condition-name entries.
• In the WORKING-STORAGE SECTION and in the LINKAGE SECTION, you

must use the clause in condition-name entries. You can also use it in the WORKING-
STORAGE SECTION to specify the initial value of any other data item, with the
result that the item assumes the specified value at the start of the object program.

• In the WORKING-STORAGE SECTION, do not use the VALUE clause in any
data-description-entry that includes or is subordinate to any entry that includes the
EXTERNAL clause. You can, however, specify the VALUE clause for condition-
name entries associated with such data-description-entries.

• When you do not specify an initial value, make no assumption regarding the initial
contents of an item in WORKING-STORAGE.

8. If you use the VALUE clause in an entry at the group level, the literal must be a
figurative constant or a nonnumeric literal. The group area is initialized without
consideration for the individual elementary or group items contained within this group.
You cannot specify a VALUE clause at the subordinate levels within this group.

9. Do not specify the VALUE clause for a group containing items with descriptions
including JUSTIFIED, SYNCHRONIZED, or USAGE other than USAGE IS
DISPLAY.

10. If you specify a VALUE clause in a data-description-entry of a data item that is
associated with a variable occurrence data item, the data item is initialized as if the value
of the data item referenced by the DEPENDING ON phrase in the OCCURS clause
specified for the variable occurrence data item is set to the maximum number of
occurrences specified by that OCCURS clause. A data item is associated with a variable
occurence data item if it is one of the following:

• A group data item that contains a variable occurrence data item
• A variable occurrence data item
• A data item that is subordinate to a variable occurrence data item

If a VALUE clause is associated with the data item referenced by a DEPENDING ON
phrase, that value is placed in the data item after the variable occurrence data item is
initialized. See the OCCURS clause for additional information.

11. A Format 1 VALUE clause specified in a data-description-entry that contains an
OCCURS clause or in an entry that is subordinate to an OCCURS clause causes every
occurrence of the associated data item to be assigned the specified value.

First Edition 7-47

COBOL85 Reference Guide

Note
Use the VALUE clause or PROCEDURE DIVISION statements to initialize all
WORKING-STORAGE data items before using them. Unexpected values may appear in
uninitialized data items.

DATA DIVISION Example
This DATA DIVISION listing forms one program with the examples at the end of Chapters
5, 6, and 8.

DATA DIVISION.

FILE SECTION.

FD

01

DISK-FILE COMPRESSED,
VALUE OF FILE-ID IS 'DISBURSE',

RECORD CONTAINS 42,
DATA RECORD IS ENTRY--DETAIL
ENTRY-DETAIL.
05 ENTRY-CHECK-NO PIC X(3) .
05 ENTRY-MONTH.

10 ENTRY-MM PIC 99.
10 ENTRY-DD PIC 99.
10 ENTRY-YY PIC 99.

05 FILLER PIC xxx.
05 ENTRY-VENDOR PIC X(20) .
05 ENTRY-ACCT-NO PIC 999.
05 ENTRY-AMOUNT PIC 9(5)V99.

* >

FD

01
01

PRINT-FILE,
LABEL RECORDS ARE OMITTED,
DATA RECORDS ARE PRINT-LINE, ERROR-LINE.
PRINT-LINE
ERROR-LINE.
05 MESSAGE
05 ERR-CODE

PIC X(70)

PIC X(20)
PIC 9.

FD TAPE-FILE,
LABEL RECORD IS STANDARD,
BLOCK CONTAINS 4 RECORDS,
VALUE OF FILE-ID IS TAPENAME,
DATA RECORD IS TAPE-LINE.

01 TAPE-LINE
t

WORKING-STORAGE SECTION.
77 BLANKS
77 CROSS-TOTAL
77 FINAL-TOTAL

7-48 First Edition

PIC X(20)

PIC X(2)
PIC S9(8)V99
PIC S9(8)V99

VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.

7/7© DATA DIVISION

-

-

11 GRAND-TOTAL
77 JOB-DATE
77 LIMIT-DATE
77 LINECOUNT
77 NO-MORE-RECORDS
77 PAGECOUNT
77 REJECT-TOTAL
77 TAPE-CHOICE
77 TAPENAME

VALUE IS '$MT0,
77 TOTALl
77 TOTAL2
77 TOTAL3
77 TOTAL4
77 TOTAL5
77 TOTAL6
77

PIC S9(8)V99
PIC 9(6)
PIC S9 (5) .
PIC S99
PIC X
PIC S9
PIC S9(7)V99
PIC XXX
PIC X(20)

S, ANNE, Tl'.
PIC S9(7)V99
PIC S9(7)V99
PIC S9(7)V99
PIC S9(7)V99
PIC S9(7)V99
PIC S9(7)V99

PIC S9VARIABLE
*JOB-INFO IS ACCEPTED FROM CONSOLE:

01 JOB-INFO.
0 3 J O B - C O D E P I C X X .

8 8 CORRECT-CODE VALUE '25'.
* *
* P R I N T - L I N E S
* *

01 HEADING1.
03 CARRIAGE-CONTROL
03 FILLER
03 FILLER

VALUE 'MONTHLY CASH
03 FILLER

01 HEADING2.
03 CARRIAGE-CONTROL
03 FILLER
03 FILLER
03 VARIABLE-MONTH
03 FILLER
03 FILLER
03 HEADING-PAGE

01 HEADING3.
03 CARRIAGE-CONTROL
03 FILLER
03 VARIABLE-HEADING
03 FILLER

01 PRINT-DETAIL.
05 FILLER
05 ENTRY-MONTH
05 FILLER
05 ENTRY-VENDOR
05 FILLER
05 ENTRY-CHECK-NO
05 FILLER

COMP-3 VALUE ZERO.
VALUE ZERO.

COMP-3 VALUE ZERO.
VALUE 'N' .

COMP-3 VALUE 1.
COMP-3 VALUE ZERO.

VALUE 'NO '

COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.

VALUE 2.

* *

* *

PIC X.
PIC X(18) VALUE SPACES.
PIC X(34)

DISBURSEMENTS JOURNAL'.
PIC X(12) VALUE SPACES.

PIC X.
PIC X(25) VALUE SPACES.
PIC X(7) VALUE 'FOR
PIC X(15) .
PIC X(15) VALUE SPACES.
PIC X(4) VALUE 'PAGE'.
PIC ZZ9.

PIC X.
PIC X(24) VALUE SPACES.
PIC X(24) VALUE SPACES.
PIC VALUE SPACES.

PIC X (l) VALUE SPACES.
PIC 9(6) .
PIC X(6) VALUE SPACES.
PIC X(20) .
PIC X(7) VALUE SPACES.
PIC X(3) .
PIC X(9) VALUE SPACES.

First Edition 7-49

COBOL85 Reference Guide

05 PRINT-ACCT-NO
05 FILLER
05 PRINT-AMOUNT

01 HOME-ACCT-LINE.
05 FILLER
05 HOME-NUMBER
05 HOME-TOTAL

01 BALANCE-LINE.
05 FILLER
05 FIELD-TOTAL
05 FILLER
05 FIELD-REJECT
05 FILLER
05 FIELD-DIFF
05 FILLER

PIC X(3).
PIC X(6) VALUE SPACES.
PIC ZZZZZZ.99.

PIC X(13)
PIC X(21).
PIC Z(8).99.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

VALUE SPACES.

PIC X(9)
PIC Z(8).99.
PIC X(8)
PIC Z(8).99.
PIC X(9)
PIC Z(8).99.
PIC X(ll)

* *
* TA P E O U T P U T
* *

01 TAPE-HEADER.
0 5 T A P E - M O N T H P I C X (1 5)
0 5 F I L L E R P I C X (5)

01 SAVE-TAPE.
0 5 S AV E - D AT E - TA P E P I C 9 (6) .
0 5 S AV E - A C C T- TA P E P I C X X X .
0 5 S AV E - TO TA L - TA P E P I C S 9 (9) V 9 9
EJECT

* *

VALUE SPACES.
VALUE SPACES.

COMP-3.

" >

7-50 First Edition

The PROCEDURE DIVISION

r This chapter discusses the last of the four major divisions of the COBOL85 program, the
PROCEDURE DIVISION. The chapter describes declarative sections, which allow you to
provide error handling procedures for 1-0 operations, and scope terminators, which delimit
the scope of PROCEDURE DIVISION statements. It also describes the special rules
governing arithmetic statements and discusses all COBOL85 verbs in alphabetical order. The
chapter concludes with an example of the PROCEDURE DIVISION.

PROCEDURE DIVISION
The PROCEDURE DIVISION contains instructions that specify the steps that the program
performs. You can divide the PROCEDURE DIVISION into sections headed by section-
names. You can further divide each section into paragraphs headed by paragraph-names.
You can then write your program instructions as COBOL85 statements or sentences.

Format
PROCEDURE DIVISION [USING data-name-1 [, data-name-2] . [data-name-64]]

rDECLARATIVES.

{section-name SECTION [segment-number]. USE-sentence.[paragraph-name, [sentence] •••]•••

END DECLARATIVES.

[section-name SECTION [segment-number].]

{[paragraph-name, [sentence] • • •[sentence] • • •

First Edition 8-1

COBOL85 Reference Guide

Syntax Rules
1. The PROCEDURE DIVISION is optional. When you include the PROCEDURE

DIVISION, the first entry must be the words PROCEDURE DIVISION, followed by a
period and a space unless you also include the USING clause.

2. Specify the USING clause only if both of the following occur:

• The program is a CALLable subprogram that is to function under the control of a
CALL statement in another program.

• The CALL statement in the calling program contains a USING clause.

3. You must define each data-name operand in the USING clause as a data item in the
LINKAGE SECTION of the program.

4. The program processes LINKAGE SECTION data items according to their data ^^^
descriptions given in the program itself.

5. level-numbers of data-names in the USING clause must be 01 or 77.
Prime Extension: data-names in the USING clause can contain a REDEFINES clause
and can be redefined by other entries within the LINKAGE SECTION.
See Chapter 13, Interprogram Communication, for a complete discussion.

6. Declarative sections are optional. When you include them, you must group them at the
beginning of the PROCEDURE DIVISION. You must precede them by the keyword
DECLARATIVES on a separate line and follow them by the keywords END
D E C L A R A T I V E S o n a s e p a r a t e l i n e . A

7. A declarative section must have a section header. A section header must consist of a
section-name, followed by the word SECTION, an optional segment-number, and a
period. Each section-name must appear on a line by itself; each section-name must be
unique.

8. A section is an entry consisting of zero or more paragraphs, preceded by a section
header. A section can consist entirely of sentences if no paragraph headers exist in the
section. A section can be empty. A section must not contain a combination of sentences
without paragraph headers and sentences with paragraph headers.

9. A paragraph is an entry consisting of zero or more sentences, preceded by a paragraph-
name.

10. Within a section, sentences can appear without paragraph headers, providing no
paragraphs exist in the section. Within the PROCEDURE DIVISION, sentences can
appear without paragraph headers, providing no sections exist in the PROCEDURE
DIVISION.

11. Within the PROCEDURE DIVISION, paragraphs can appear without section headers,
providing no sections exist in the PROCEDURE DIVISION.

12. segment-numbers must be integers from 0 to 99. See SEGMENT-LIMIT entry in
Chapter 6.

13. paragraph-names and section-names follow the general rules for word formation in
Chapter 4. These names can be all numeric.

14. A sentence is a single statement or a series of statements terminated by a period and
followed by a space.

8-2 First Edition

The PROCEDURE DIVISION

15. A statement consists of a COBOL85 verb followed by appropriate operands (literals or
data-names) and other clauses necessary for the completion of the statement. Statements
are classed as imperative, conditional, and compiler-directing.
Imperative statements specify one of the following:

• An unconditional action to be taken by the object program. An unconditional action
can be

o An arithmetic statement without the ON SIZE ERROR or NOT ON SIZE ERROR
phrase

o An 1-0 statement without the INVALID KEY, NOT INVALID KEY, AT END, or
NOT AT END clause

o A STRING, UNSTRING, or CALL statement without the ON OVERFLOW or
NOT ON OVERFLOW clause

• A conditional statement that includes its explicit scope terminator. See the section
Scope Terminators, below, for more information.

Conditional statements test for conditions that determine whether the program flow
takes an alternate path. See Chapter 4 for rules governing conditional statements.
Conditional statements arc the following:

• IF, SEARCH, and RETURN with the AT END or NOT AT END clause
• READ with the AT END, NOT AT END, INVALID KEY, or NOT INVALID KEY

clause
• WRITE, DELETE, REWRITE, and START with the INVALID KEY or NOT

INVALID KEY clause
• Arithmetic statements (ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT)

with the ON SIZE ERROR or NOT ON SIZE ERROR phrase
• STRING and UNSTRING with the ON OVERFLOW or NOT ON OVERFLOW

clause
• CALL with the ON OVERFLOW clause

Compiler-directing statements cause the compiler to perform an action but have no
effect on execution of the object program. USE, EJECT, and SKIP are directives to the
compiler.

16. The only limit on code size in the PROCEDURE DIVISION is the amount of dynamic
space allocated to the user by the System Administrator. The upper limit is 256
segments.

Note
If your COBOL85 program is larger than one segment, you must use BIND to link and
execute it. If your program is less than one segment, you can use either BIND or SEG.

First Edition 8-3

COBOL85 Reference Guide

Declarative Sections
The sections under the DECLARATIVES header provide procedures that the program
invokes when an 1-0 condition occurs that the program does not otherwise handle.

Because the program invokes such procedures only at the time an error occurs in an 1-0
operation, these procedures must not appear in the regular sequence of procedural statements.
Instead, you must group them within the declaratives section. You must group together error-
handling procedures for each file and precede them by a separate USE sentence.
For additional information, see the USE statement in this chapter, and the example at the end
of this chapter.

Format
D E C L A R A T I V E S . ^ ^

{section-name SECTION [segment-number]. USE-sentence.X[paragraph-name, [sentence] • • •] . . . J

END DECLARATIVES.

Syntax Rules
1. Each declarative section includes a section header, a USE sentence, and, optionally, one

or more paragraphs.
2. END DECLARATIVES must be followed by a period.

Scope Terminators
Scope terminators delimit the scope of PROCEDURE DIVISION statements. The two types
of scope terminators are explicit and implicit.

Explicit Scope Terminators
You can terminate certain PROCEDURE DIVISION statements by using the following
explicit scope terminators:

E N D - A D D E N D - M U LT I P LY E N D - S TA R T
END-CALL END-PERFORM END-STRING
END-COMPUTE END-READ END-SUBTRACT
END-DELETE END-RETURN END-UNSTRING
END-DIVIDE END-REWRITE END-WRITE
E N D - I F E N D - S E A R C H

Statements that include their explicit scope terminators are called delimited scope
statements. When you nest a delimited scope statement within another delimited scope
statement containing the same verb, each explicit scope terminator terminates the statement ^
begun by the most recent and as yet unterminated occurrence of that verb.

8-4 First Edition

The PROCEDURE DIVISION

In the following example, the END-ADD statement that immediately follows imperative-
statement-1 explicitly terminates the scope of the nested ADD statement. Likewise, the END-
ADD statement that immediately follows imperative-statement-2 explicitly terminates the
scope of the containing ADD statement.

ADD data-name-1 TO data-name-2
ON SIZE ERROR

ADD data-name-3 TO data-name-4
NOT ON SIZE ERROR

impera t i ve - s ta temen t -1
END-ADD

NOT ON SIZE ERROR
i m p e r a t i v e - s t a t e m e n t - 2

END-ADD.

Implicit Scope Terminators
You can terminate any PROCEDURE DIVISION statement by using either of the following
implicit scope terminators:

• At the end of any sentence, the separator period terminates the scope of all previous
statements not yet terminated either explicitly or implicitly.
For example, in the following code the period implicitly terminates the READ and the
IF statements.

IF condit ion
READ filename

AT END
i m p e r a t i v e - s t a t e m e n t - 1 .

However, in the following example the period implicitly terminates only the IF
statement. The END-READ explicitly terminates the READ statement.

IF condit ion
READ filename

AT END
impe ra t i ve - s ta temen t -1

END-READ
i m p e r a t i v e - s t a t e m e n t - 2 .

• When you nest any statement within another statement, the next clause or phrase of the
containing statement that follows the nested statement terminates the scope of any
unterminated nested statement.
For example, in the following code the ELSE clause implicitly terminates the READ
statement.

IF condi t ion
READ filename

AT END
impe ra t i ve - s ta temen t -1

ELSE
i m p e r a t i v e - s t a t e m e n t - 2 .

First Edition 8-5

COBOL85 Reference Guide

Likewise, in the following example the NOT INVALID KEY phrase implicitly
terminates the ADD statement.

READ filename-2
INVALID KEY

ADD data-name-1 TO data-name-2
NOT INVALID KEY

impera t i ve -s ta temen t -2 .

When you nest statements within statements that allow optional conditional phrases,
COBOL85 considers any optional conditional phrase that it encounters as the next
phrase of the most recent unterminated statement with which that phrase can be
associated, but with which no such phrase has already been associated.
For example, in the following code COBOL85 considers the NOT ON SIZE ERROR
phrase as the next phrase of the nested ADD statement.

ADD a to b
ON SIZE ERROR

ADD a to c
NOT ON SIZE ERROR

Arithmetic Statements in the PROCEDURE DIVISION
The five arithmetic verbs are ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE.
The following rules govern arithmetic statements in the PROCEDURE DIVISION:

1. All data-names used in arithmetic statements must be elementary numeric data items
defined in the DATA DIVISION of the program. However, when they are the operands
of the GIVING phrase, they can be numeric edited, index-names and index items are
not permitted in arithmetic statements.

2. All literals used in arithmetic statements must be numeric literals.
3. COBOL85 provides decimal-point alignment automatically throughout arithmetic

computations.
4. The maximum size of each operand is 18 decimal digits.
5. The composite of operands for an arithmetic statement is a hypothetical data item

resulting from superimposition of its operands aligned on their decimal points. For
example, 12345678.9 and 1.23456789, superimposed, form a composite having 16
digits. No composite of operands can contain more than 18 decimal digits unless you
use the composite with the COMPUTE statement or the GIVING phrase.
Figure 8-1 shows the composite of the operands 12345678.9, 1.23456789, and
1234.56.

8-6 First Edition

*)

The PROCEDURE DIVISION

1 2 3 4 5 6 7

2
1 . 2
4 . 5

3 4
6

6 7 8 9

FIGURE 8-1
Composite of Operands

Q10166-1LA-13-0

The six phrases that can appear in arithmetic statements are

• GIVING
• ROUNDED
• ON SIZE ERROR
• NOT ON SIZE ERROR
• CORRESPONDING
• Arithmetic scope terminator

The GIVING Phrase
When you specify the GIVING phrase, COBOL85 places the calculated result of the
arithmetic operation into the data-name that follows the word GIVING. The data-name itself
is not used in the computation and can be a numeric edited item. Do not use the GIVING
phrase with the COMPUTE statement.

The ROUNDED Phrase
When you specify the ROUNDED phrase, if the most significant digit of the excess is
greater than or equal to 5, COBOL85 increases the value of the least significant digit of the
resultant data-name by 1. If you do not specify the ROUNDED phrase, truncation, and hence
loss of precision, may occur.
COBOL85 rounds a computed negative result by rounding the absolute value of the
computed result and making the rounded result negative.
Table 8-1 illustrates the relationship between a calculated result and the value stored in a
receiving data item, with and without rounding.
TABLE 8-1
Rounding Results

Item to Receive Calculated Result

Calculated Result PICTURE Value After
Rounding

Value After
Truncating

-12.36
8.432
35.6
65.6

.0055

S99V9
9V9

99V9
S99V

SV999

-12.4
8.4

35.6
66

.006

-12.3
8.4

35.6
65

.005

First Edition 8-7

COBOL85 Reference Guide

The ON SIZE ERROR Phrase
Use the ON SIZE ERROR phrase to specify actions to be taken should a size error occur
during an arithmetic operation. Write the ON SIZE ERROR phrase immediately after any
arithmetic statement, as an extension of the statement.
If, after decimal-point alignment, the absolute value of a calculated result exceeds the largest
value that the receiving field can hold, a size error condition exists.
Division by 0 always causes a size error condition and always terminates the arithmetic
operation.
If you specify the ROUNDED phrase, rounding takes place before COBOL85 checks for
size errors.
If you specify the ON SIZE ERROR phrase, and a size error condition arises, the value of the
receiving data-name is unaltered, and COBOL85 executes the series of imperative-statements
that you specified for the condition.
If you do not specify the ON SIZE ERROR phrase and a size error condition arises, the final
result is undefined. Truncation usually results.
If you use the -SIGNALERRORS compiler option, program execution terminates when a
size error condition exists.
An example of an ON SIZE ERROR phrase is

ADD 1 TO RECORD-COUNT
ON SIZE ERROR

MOVE ZERO TO RECORD-COUNT
DISPLAY "LIMIT 99 EXCEEDED".

Assuming that you defined RECORD-COUNT as PICTURE 99, the MOVE and DISPLAY
statements are not executed until RECORD-COUNT contains the value 99 and the ADD
statement is executed. At that point a size error condition exists, and the MOVE and
DISPLAY statements are executed.

The NOT ON SIZE ERROR Phrase
Use the NOT ON SIZE ERROR phrase to specify actions to be taken when a size error does
not occur during an arithmetic operation. Write the NOT ON SIZE ERROR phrase
immediately after any arithmetic statement, as an extension of the statement.
If the size error condition does not exist after the execution of the arithmetic operations
specified by an arithmetic statement, COBOL85 ignores the ON SIZE ERROR phrase, if you
specified one. COBOL85 then transfers control to the end of the arithmetic statement or to
the imperative-statements in the NOT ON SIZE ERROR phrase, if you specified one.

The CORRESPONDING Phrase
You can use the CORRESPONDING phrase with all arithmetic statements, and with MOVE
and IF statements. The CORRESPONDING phrase requires two operands, group-1 and

8-8 First Edition

The PROCEDURE DIVISION

group-2, each of which must refer to a group item. A pair of data items, one from group-1
and one from group-2, correspond if the following three conditions exist:

• A data item in group-1 and a data item in group-2 are not designated by the keyword
FILLER and have the same data-name and the same qualifiers up to, but not including,
group-1 and group-2.

• In arithmetic statements both data items are elementary numeric data items. In a MOVE
or COMPUTE statement at least one data item is an elementary data item. (In IF
statements, both items can be elementary or nonclcmcntary.)

• The description of group-1 and group-2 does not contain level-number 66, 77, or 88 or
the USAGE IS INDEX clause.

A data item that is subordinate to group-1 or group-2 and that contains a REDEFINES,
RENAMES, OCCURS, or USAGE IS INDEX clause is ignored, as well as any items
subordinate to it. However, group-1 and group-2 can have REDEFINES or OCCURS clauses
or be subordinate to data items with REDEFINES or OCCURS clauses.
If you specify the ROUNDED phrase with the CORRESPONDING phrase, rounding as
described above is performed on each matched receiving operand.
If you specify the ON SIZE ERROR phrase in conjunction with the CORRESPONDING
phrase, COBOL85 checks for size errors for each pair of operands that are matched under the
rules for CORRESPONDING, regardless of the results of any previous size error calculations
in the statement. COBOL85 executes the imperative-statement that you specified in the ON
SIZE ERROR phrase if any matching pairs of operands cause a size error.

Arithmetic Scope Terminators
You can explicitly terminate an arithmetic statement with one of the arithmetic scope
terminators. The arithmetic scope terminators are END-ADD, END-SUBTRACT, END-
MULTIPLY, END-DIVIDE, and END-COMPUTE. See the section Scope Terminators at the
beginning of this chapter for more information.

Procedure Statements
This section describes COBOL85 verbs in alphabetical order. For a complete list of
COBOL85 verbs and other reserved words, see COBOL85 Reserved Words, Table B-2 in
Appendix B.

ACCEPT

r
r

Moves terminal or system data to the specified data-name.

Format 1
ACCEPT data-name [FROM mnemonic-name]

First Edition 8-9

COBOL85 Reference Guide

Format 2
DATEISACCEPT data-name FROM < DAY f-
TIME J

Syntax Rules
1. You must specify the mnemonic-name in Format 1 with the CONSOLE IS clause in the

SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION.
2. Only one data-name is allowed after ACCEPT.

General Rules

1. The ACCEPT statement transfers data from the terminal or from the system clock. The
transferred data replaces the contents of the field specified by data-name.

2. Execution of a Format 1 ACCEPT statement consists of the following steps:

• Execution is suspended.
• When you enter a carriage return, the program stores the kcyed-in data preceding the

carriage return in the field designated by data-name, and normal execution proceeds.
• COBOL85 always considers terminal input as alphanumeric, and transfers it without

conversion.
• If the terminal input and data-name have unequal sizes, COBOL85 treats the data

transfer as an alphanumeric to alphanumeric move, with space-fill on the right or
right truncation.

3. The ACCEPT statement can transfer a single line of data with a maximum length of 256
characters.

4. A Format 2 ACCEPT statement transfers the requested information to the data item
specified by data-name according to the rules of the MOVE statement. DATE, DAY,
and TIME are reserved words; do not describe them in the COBOL85 program.

5. DATE has the following data elements: year, month, and day of the month, in that
sequence. Thus, July 1, 1988 is expressed as 880701. DATE, when accessed by a
COBOL85 program, is treated as though you describe it in the program as an unsigned
elementary numeric integer data item six digits long.

6. DAY has the following data elements: year, and day of year, in that sequence. July 1,
1988 is expressed as 88183. DAY, when accessed by a COBOL85 program, is treated as
though you describe it in the COBOL85 program as an unsigned elementary numeric
integer data item five digits long.

7. TIME has the following data elements: hours, minutes, seconds, and hundredths of a
second. TIME is based on time elapsed after midnight on a 24-hour basis; thus, 2:41
p.m., or 1441 hours, is expressed as 14410000. TIME, when accessed by a COBOL85
program, is treated as though you describe it in the program as an unsigned elementary
numeric integer data item eight digits long. The minimum value of TIME is 00000000;
the maximum value is 23595999.

8-10 First Edition

ADD

r

The PROCEDURE DIVISION

Note
The ACCEPT statement does not perform functions declared in the definition of the data-
name, such as BLANK WHEN ZERO or JUSTIFIED. All input, including numbers, is left-
justified. When accepting numbers for calculations, use UNSTRING and INSPECT to
prepare the data before doing calculations. The following example demonstrates this
procedure.

Example
ID DIVISION.
PROGRAM-ID. CALC.
DATA DIVISION.
WORKING-STORAGE SECTION.
0 1 D I S P L A Y - T O T A L P I C X (8) .
0 1 W O R K - T O T A L P I C X (8) J U S T I F I E D R I G H T .
0 1 T O T A L - W O R K P I C S 9 (6) V 9 9 .

PROCEDURE DIVISION.
000- INIT IALIZE.

DISPLAY 'WHAT IS INITIAL VALUE OF TOTAL?'.
DISPLAY ' ** NOTE FORMAT MUST NOT USE DECIMAL POINT.'
DISPLAY ' ** EX: TO REGISTER $45.25, ENTER 4525.'.
ACCEPT DISPLAY-TOTAL.
UNSTRING DISPLAY-TOTAL DELIMITED BY SPACE INTO WORK-TOTAL.
INSPECT WORK-TOTAL REPLACING LEADING SPACES BY ZEROS.
IF WORK-TOTAL NUMERIC

MOVE WORK-TOTAL TO TOTAL-WORK
DIVIDE 100 INTO TOTAL-WORK

ELSE
DISPLAY "INVALID ENTRY".

Adds two or more numeric values and stores the resulting sum.

Format 1
", data-name-2'
, literal-2

f data-name-1
ADD J. literal-1

L arith - expr- 7 J |_, arith - expr-2 J

TO data-name-3 [ROUNDED] [, data-name-n [ROUNDED]] • • •

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2)

[END-ADD]

First Edition 8-11

COBOL85 Reference Guide

Format 2
f data-name-1

ADD 1 literal-1
", data-name-2'
, literal-2

{data-name-3'
literal-3
arith-expr-3

i — i - _ . _ _ . _ - - — —

[_ arith-expr-1 J _, arith-expr-2 _

GIVING {data-name-4 [ROUNDED]} [, data-name-n [ROUNDED]]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 3

ADD f CORRESPONDING!
\CORR

data-name-1 TO data-name-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Syntax Rules
1. In Formats 1 and 2, each data-name must refer to an elementary numeric item, except

that in Format 2 each item following GIVING can be either an elementary numeric item
or an elementary numeric edited item.

2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 digits. That is, if all operands, excluding those

following the word GIVING, are superimposed upon each other, and aligned by their
implied decimal points, their composite must not exceed 18 decimal digits in length.

4. In Format 3, data-name-1 and data-name-2 must be group items.
5. Prime Extension: The use of arithmetic expressions in ADD statements is a Prime

extension.

General Rules

1. A Format 1 ADD statement adds the sum of the values of the operands preceding the
word TO to the current value of data-name-3, and stores the result in data-name-3.
COBOL85 repeats this process for each operand following TO.

2. A Format 2 ADD statement adds the values of the operands preceding the word
GIVING, and stores the sum as the new value of data-name-4.

8-12 First Edition

ALTER

r

T/}0 PROCEDURE DIVISION

3. A Format 3 ADD statement adds elementary items subordinate to data-name-1 to
elementary items subordinate to data-name-2 that are defined with the same name, and
stores the sums as the new values of the corresponding elementary items subordinate to
data-name-2.

4. Use the ON SIZE ERROR phrase when the calculated answer can be larger than the
result field can hold.

5. See the section Algebraic Signs in Chapter 4 for information on the rules for signs.
6. The ADD statement is governed by the mles for GIVING, ROUNDED, ON SIZE

ERROR, NOT ON SIZE ERROR, and CORRESPONDING in the section Arithmetic
Statements in the PROCEDURE DIVISION at the beginning of this chapter, and by the
rules for arithmetic statements in Chapter 4.

7. The END-ADD clause delimits the scope of the ADD statement. For more information,
see the section Scope Terminators at the beginning of this chapter.

Examples
ADD INTEREST, DEPOSIT TO BALANCE ROUNDED.
ADD REGULAR-TIME, OVERTIME GIVING GROSS-PAY.
ADD CORRESPONDING DETAIL-LINE TO TOTAL-LINE.
ADD INTEREST, DEPOSIT TO BALANCE

ON SIZE ERROR
DISPLAY 'SIZE ERROR'

NOT ON SIZE ERROR
MOVE BALANCE TO NEW-BALANCE

END-ADD.

The first statement results in the total sum of INTEREST, DEPOSIT, and BALANCE being
rounded and placed in BALANCE. The second statement results in the sum of REGULAR-
TIME and OVERTIME being placed in the item GROSS-PAY. The third statement adds the
values of elementary items in DETAIL-LINE to elementary items of the same name in
TOTAL-LINE. If the fourth statement causes a size error, die program displays a message;
otherwise, the program updates NEW-BALANCE.

Modifies a simple GO TO statement elsewhere in the PROCEDURE DIVISION, thus
changing the sequence of execution of program statements.

Format
ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4) • • .

First Edition 8-13

COBOL85 Reference Guide

[END-CALL]
Chapter 13, Interprogram Communication, describes the CALL statement in detail.

CANCEL
Releases the memory areas occupied by the referred to program.

Format

Syntax Rules
1. Each literal-1, literal-2, and so on, must be a nonnumeric literal.
2. You must define each identifier-1, identifier-2, and so on, as an alphanumeric data item

such that its value can be a program name.

8-14 First Edition

* >

* >
Syntax Rules
1. The procedure-names 1, 3, and so on, contain a single GO TO sentence without the

DEPENDING clause.
2. The procedure-names 2, 4, and so on, name other paragraphs or sections in the

PROCEDURE DIVISION.

General Rule
Execution of the ALTER statement modifies the GO TO statement of the first procedure-
name so that subsequent executions of the modified GO TO statement transfer control to the
second procedure-name.

c a l l " * >
Allows one program to communicate with one or more other programs. It transfers control
from one object program to another within a runfile, with both programs having access to
data items referred to in the CALL statement.

Format

CALL ■\1uJl̂ ne'1\ [USING data-name-2 [, data-name-3] • • ♦]

[ON OVERFLOW imperative-statement-1]

* >

The PROCEDURE DIVISION

General Rule
CANCEL is syntax-checked only.

CLOSE
Terminates the processing of files.

Format 1
CLOSE file-name-1 [file-name-2] ,

Format 2

REEL
CLOSE < file-name-1 UNIT

WITH NO REWIND

Chapters 9, 10, 11, and 12 describe the use of the CLOSE statement with sequential files,
indexed files, relative files, and tape files, respectively.

^ C O M P U T E
Evaluates an arithmetic expression and then stores the result in a designated item.

Format 1
COMPUTE data-name-1 [ROUNDED] [, data-name-2 [ROUNDED]] - • • = arith-expr

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2)

[END-COMPUTE]

Format 2

COMPUTE {corrESPONPING} data-name-1 [ROUNDED] = data-name-2

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2)

[END-COMPUTE]

r First Edition 8-15

COBOL85 Reference Guide

CONTINUE
Indicates that no executable statement is present.

Format
CONTINUE

Syntax Rule
You can use the CONTINUE statement anywhere a conditional statement or an imperative
statement is required.

General Rule
The CONTINUE statement has no effect on the execution of the program.

8-16 First Edition

Syntax Rules
1. In Format 1, data-names appearing to the left of the equal sign must refer to either an

elementary numeric item or an elementary numeric edited item.
2. In Format 2, data-name-1 and data-name-2 must be group items.

General Rules

1. The COMPUTE statement is governed by the rules for ROUNDED, ON SIZE ERROR,
NOT ON SIZE ERROR, and CORRESPONDING in the section Arithmetic Statements
in the PROCEDURE DIVISION at the beginning of this chapter. It is also governed by
the general rules for arithmetic expressions described in Chapter 4.

2. The COMPUTE statement allows you to combine arithmetic operations without the
length restrictions on composite of operands and on receiving data items imposed by the
arithmetic statements ADD, SUBTRACT, MULTIPLY, and DIVIDE.

3. In Format 1, an arithmetic expression can consist of a single data-name or literal. This
format provides a method of setting the values of data-name-1, data-name-2, and so on,
equal to the value of the arithmetic expression.

4. In Format 1, if more than one data-name precedes the equal sign, COBOL85 computes
the value of the arithmetic expression, and then stores this value as the new value of each
data-name.

5. In Format 2, COBOL85 sets data items in data-name-1 to the contents of data items in
data-name-2 that are defined with the same name, subject to the rules for
CORRESPONDING as discussed earlier in this chapter.

6. If you specify the CORRESPONDING phrase, only those data items that are defined as
numeric are used in the computation.

7. The END-COMPUTE clause delimits the scope of the COMPUTE statement. For more
information, see the section Scope Terminators at the beginning of this chapter.

* >

The PROCEDURE DIVISION

DELETE

r

Removes a record from an indexed or relative file.

Format
DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

Chapters 10 and 11 describe the use of the DELETE statement with indexed files and relative
files, respectively.

DISPLAY

r
r

Displays low-volume data on the user terminal or on the supervisor terminal.

Format
mcnI .v f data-name-l\ [~', data-name-2"\ riinrHVI ,™S*±M \meraU) [_, literal-2 J * * ' [^™ mnemonic-name]

[[WITH] NO ADVANCING]

Syntax Rules
1. When you specify the UPON clause, you must also specify the mnemonic-name in the

CONSOLE IS clause of the SPECIAL-NAMES paragraph in the ENVIRONMENT
DIVISION.

2. The maximum number of characters that you can output without truncation is 256 per
DISPLAY statement.

3. Display items are left-justified (truncated on the right).

General Rules

1. When you omit the UPON clause, the data is displayed on the user terminal.
2. If you specify a figurative constant as an operand, it is displayed as a single character.
3. Prime Extension: COBOL85 converts data whose usage is COMP, BINARY, COMP-1,

or COMP-2 to trailing separate sign format and displays it as shown in Table 8-2, subject
to the editing operations described in Rule 4. The size of the displayed data item, in
characters, is the number of Ps plus the number of 9s in the PICTURE clause plus 3.

First Edition 8-17

COBOL85 Reference Guide

4. Prime Extension: COBOL85 performs the following editing operations for non-
DISPLAY data types and unsigned DISPLAY data types:

• Leading zeros are suppressed.
• The insertion decimal point is used for implied decimal points.
• The floating insertion character (-) is used to represent the operational sign.
• Data is right-shifted 3 bytes.

COBOL85 displays signed DISPLAY items as follows:

• A trailing embedded operational sign is displayed.
• Leading zeros are not suppressed.
• The insertion decimal point is used for implied decimal points.
• Data is right-shifted 3 bytes.

The compiler option -NO_FORMATTED_DISPLAY (-NFDIS) prevents the occurrence
of all editing operations for DISPLAY data types. COBOL85 displays data as it is
formatted in memory. Operational signs are represented as trailing embedded.

5. Prime Extension: NO ADVANCING displays a line of information on the terminal but
does not output a carriage return. It thus allows, for example, an answer to be input from
the terminal on the same line with the question.

6. If the data item is a group item, then COBOL85 treats the displayed item as
alphanumeric with a size equal to the total number of bytes in the group.

TABLE 8-2
DISPLAY of Binary Data Types
(After Conversion, If Necessary, to Display Type)

Original Data Type Bits Size of Display Item in
Characters (Bytes)

Signed COMP or BINARY 16
32 14
64 22

Unsigned COMP or BINARY 16
32 14
64 22

COMP-1 14
COMP-2 23

Example
OK, SLIST DISP.COBOL85

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION

8-18 First Edition

7/j© PROCEDURE DIVISION

PIC 999V99 VALUE 2 3 . 4 5 .
PIC S999V99 VALUE - 2 3 . 4 5 .
PIC S9(3)V99 VALUE - 2 3 . 4 5 COMP-3
PIC 9 (3) VALUE 23 COMP.
PIC S9(3) VALUE -23 COMP.
PIC S9(3)V99 VALUE -2 3.4 5 COMP.

VALUE - 2 3 . 4 5 COMP-1
VALUE 23.45 COMP-2
VALUE 23 INDEX.

50 :INDEXED BY INDEX-NAME.
10) VALUE 'SAMPLE'.

01 UNSIGNED-DISPLAY
01 SIGNED-DISPLAY
01 COMP3
01 UNSIGNED_BINARY
01 SIGNED_BINARY
01 SIGNED_NON_INT_BINARY
01 SHORT_FLOAT
01 LONG_FLOAT
01 INDEX-ITEM
01 FILLER.

05 TABLE1 PIC XX OCCU
01 ALPHANUMERIC_DATA PIC
PROCEDURE DIVISION.
STARTIT.

SET INDEX-NAME TO 23.
DISPLAY UNSIGNED-DISPLAY.
DISPLAY SIGNED-DISPLAY.
DISPLAY COMP3.
DISPLAY UNSIGNED_BINARY.
DISPLAY SIGNED_BINARY.
DISPLAY SIGNED_NON_INT_BINARY.
DISPLAY SHORT_FLOAT.
DISPLAY LONG_FLOAT.
DISPLAY INDEX-ITEM.
DISPLAY INDEX-NAME.
DISPLAY ALPHANUMERIC_DATA.
DISPLAY 'A NON-NUMERIC LITERAL'.

* d isp lay numer ic l i t e ra l
DISPLAY 9.

* d i sp lay figu ra t i ve cons tan t
DISPLAY ZERO.
STOP RUN.

OK, COBOL85 DISP -FDIS
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: DISP.COBOL85]

OK, BIND -LO DISP -LI COBOL85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE

OK, RESUME DISP
2 3 . 4 5

023.4N
- 2 3 . 4 5

23
-23

- 2 3 . 4 5
-2.345000E+01
2.34 50000000000E+0001

23
23

SAMPLE
A NON-NUMERIC LITERAL
9
0

First Edition 8-19

" >

COBOL85 Reference Guide

If you specify the -NFDIS compiler option, DISPLAY data is displayed as it is formatted in
memory.

OK, COBOL85 DISP -NFDIS
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: DISP.COBOL85]

OK, BIND -LO DISP -LI COBOL85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE

OK, RESUME DISP
02345
0234N

-23 .45
23

-23
-23 .45

-2.345000E+01
2.3450000000000E+0001

23
23

SAMPLE
A NON-NUMERIC LITERAL
9
0
OK,

DIVIDE
Divides one numeric data item into another and stores the quotient and, optionally, the
remainder.

Format 1
Cdata- name-1 \̂

DIVIDE 1 literal-1 I INTO data-name-2 [ROUNDED] [, data-name-3 [ROUNDED]] • • •
\^arith-expr-l J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

~ >

8-20 First Edition

The PROCEDURE DIVISION

Format 2

DIVIDE
{data-name-l^\ r-Y%#*r\-% (data-name-2'

«_*_., L j|£0 j J uural.2
arith-expr-1 J *-— -* [arith-expr-2

GIVING data-name-3 [ROUNDED] [, data-name-4 [ROUNDED]] • • •

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 3

{data-name-1"\ r-™™-) fdata-name-2^
literal-1 V -j ^^ V < literal-2 V
arith-expr-1 J *-— * [arith-expr-2 J

GIVING data-name-3 [ROUNDED]

REMAINDER data-name-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 4

r n n , i n r f C O R R E S P O N D l N G l _ , fl N T O l , , . , r o n r n u i w r n

DIVIDE -i r, f- data-name-1 < -^— ^ data-name-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

First Edition 8-21

COBOL85 Reference Guide

~ \

'

Syntax Rules
1. Each data-name must refer to an elementary numeric item, except that a data-name

associated with the GIVING or REMAINDER phrase can refer either to an elementary
numeric item or to an elementary numeric edited item.

2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. If all receiving data items are

superimposed on each other, and aligned on their decimal points, their composite must
not exceed 18 decimal digits in length.

4. Division by 0 always causes a size error condition if you specify the ON SIZE ERROR
phrase. If you do not specify the ON SIZE ERROR phrase, but you do specify the
-SIGNALERRORS compiler option, division by 0 causes the program to abort. Division
by 0 under any other circumstances causes undefined results.

5. The DIVIDE statement is governed by the rules for GIVING, ROUNDED, ON SIZE
ERROR, NOT ON SIZE ERROR, and CORRESPONDING at the beginning of this
chapter, and by the rules for arithmetic statements listed in Chapter 4.

6. Prime Extensions: In Format 4, data-name-1 and data-name-2 must be group items.
The use of arithmetic expressions in DIVIDE statements is a Prime extension.

General Rules

1. In Format 1, data-name-1 or literal-1 is divided into data-name-2, data-name-3, and so
on; the quotient then replaces the dividend in data-name-2, data-name-3, and so on.

2. In Format 2, division occurs according to these rules:

• If you use the keyword INTO, the value of the first operand is divided into the value
of the second, and the result is stored in data-name-3, data-name-4, and so on.

• If you use the keyword BY, the value of the second operand is divided into the value
of the first, and the result is stored in data-name-3, data-name-4, and so on.

3. Use Format 3 when you need to store a remainder from the division operation.
COBOL85 defines the remainder as the result of subtracting the product of the quotient
(data-name-3) and the divisor from the dividend. If you define data-name-3 as a
numeric edited item, the quotient used to calculate the remainder is an intermediate field
that contains the unedited quotient. If you specify the ROUNDED phrase, the quotient
used to calculate the remainder is an intermediate field that contains the quotient of the
DIVIDE statement, truncated rather than rounded.

4. The accuracy of the REMAINDER data item (data-name-4) is defined by the calculation
described above. COBOL85 performs appropriate decimal alignment and truncation (not
rounding) for data-name-4, as needed.

5. When you use the ON SIZE ERROR phrase in Format 3, the following rules pertain:

• If the size error occurs on the quotient, no remainder calculation is meaningful. Thus,
the contents of the data items referenced by both data-name-3 and data-name-4
remain unchanged.

• If the size error occurs on the remainder, the contents of data-name-4 remain
unchanged.

8-22 First Edition

The PROCEDURE DIVISION

6. In Format 4, elementary items subordinate to data-name-1 and data-name-2 that you
define with the same name are divided. If you specify the INTO phrase, COBOL85
places the quotient in the matching elementary items subordinate to data-name-2.
Otherwise, the quotient is placed in the matching elementary items subordinate to data-
name-1.

1. The END-DIVIDE clause delimits the scope of the DIVIDE statement. For more
information, see the section Scope Terminators at the beginning of this chapter.

EJECT — Prime Extension

r
Directs the compiler to start a new page for the program listing.

Format
EJECT

ENTER

General Rule
This statement causes the compiler to insert a form feed in the program listing after the line
containing EJECT. The statement can occur in any division in the program. You must code it
in coding area B (Columns 12-72).

Is used for documentation only. It has no effect on the compiled program.

Format
ENTER language-name [routine-name].

Syntax Rules
1. You can use the language-name and routine-name following ENTER as programmer-

defined words elsewhere in the program.
2. The language-name and routine-name must each contain at least one alphabetic

character.

EXHIBIT

Displays data at the user terminal. It is useful for debugging.

r
-

Format

EXHIBIT /!£!L«- . 1u\ [NAMED] data-name

First Edition 8-23

COBOL85 Reference Guide

EXIT

General Rules

1. You can insert the EXHIBIT statement anywhere in the PROCEDURE DIVISION to
provide debugging information. The data that you specify is exhibited on the terminal, in
the format shown for the DISPLAY statement.

2. The EXHIBIT statement differs from DISPLAY in that both the data-name and its value,
connected by an = character, are displayed. A space precedes and follows the = character.

3. EXHIBIT is the same as EXHIBIT NAMED.

Example
The program statement

EXHIBIT NAMED EMPLOYEE-NO

when executed, produces the output

EMPLOYEE-NO = 950

EXIT PROGRAM
Marks the logical end of a called program.

8-24 First Edition

" >

~

* >

Provides an endpoint for a procedure or series of procedures.

Format
EXIT.

Syntax Rules
1 . T h e E X I T s t a t e m e n t i s o p t i o n a l . ^ . ^
2. When you use the EXIT statement, it must appear in a sentence by itself.
3. The EXIT sentence can be the only sentence in its paragraph, but it must be the last

sentence in its paragraph.

General Rule
An EXIT statement enables you to enhance the readability of a program by designating a
termination point for a procedure or series of procedures. The EXIT statement has no other
effect on the compilation or execution of the program; COBOL85 ignores it during
compilation and execution.

The PROCEDURE DIVISION

GOTO

r

r
r

For/naf
EXIT PROGRAM.

Chapter 13 discusses the EXIT PROGRAM statement.

Transfers control from one part of the PROCEDURE DIVISION to another.

Format 1
GOTO [procedure-name]

Format 2
GO TO procedure-name-1 [, procedure-name-2] • • • [, procedure-name-n]

DEPENDING ON {*j~}

Syntax Rules
1. A paragraph-name or section-name referenced by an ALTER statement must consist

only of that procedure-name followed by a Format 1 GO TO statement.
2. In Format 2, data-name must be an elementary numeric integer data item. The arith-expr

must have an integer value.
3. A procedure-name can be either a paragraph-name or a section-name.
4. A Format 1 GO TO statement without a procedure-name must be the only statement in

its paragraph.
5. Prime Extension: The use of an arithmetic expression in a GO TO statement is a Prime

extension.

General Rules

1. In Format 1, if you do not specify procedure-name, an ALTER statement referring to
this GO TO must be executed before the GO TO is executed; otherwise, control passes
to the next statement.

2. When a Format 1 GO TO statement is executed, control is transferred to procedure-
name, or to another procedure-name if the GO TO statement has been modified by an
ALTER statement.

3. When a GO TO statement represented by Format 2 is executed, control is transferred to
procedure-name-1, procedure-name-2, and so on, depending on the value of the data-
name or the arithmetic expression This value must be between 1 and n, where n is the
number of procedure-names listed. If the value of the data-name or the arithmetic
expression is 1, control goes to the first procedure in the series, and so on. If the value of
the data-name is anything other than the positive and unsigned integers between 1 and n,

First Edition 8-25

COBOL85 Reference Guide

then no transfer occurs and control passes to the next statement in the normal sequence
for execution.

GOBACK — Prime Extension
Marks the logical end of a called program.

Format
GOBACK

Chapter 13 discusses the GOBACK statement.

~ >

Causes the evaluation of a condition, permitting the execution of specified statements
depending on the value of the condition.

Format

IF CORRESPONDING condition-1 [THEN] {nexTsENTENCe}

f _________ {statement-2} • • • [END-IF]OTHERWISE {statement-2) • • • [END-IF]
< ELSE NEXT SENTENCE

OTHERWISE NEXT SENTENCE
END-IF

Syntax Rules
1. The conditions in the IF statement must conform to the rules for conditions specified in

the section Conditional Expressions in Chapter 4, and in the section on Arithmetic
Statements in the PROCEDURE DIVISION at the beginning of this chapter.

2. You can omit the ELSE and OTHERWISE clauses if you do not need them.
3. Prime Extension: OTHERWISE is a Prime extension.
4. THEN is always optional. OTHERWISE and ELSE are equivalent.
5. Use the CORRESPONDING phrase with a relation condition. Both operands of the

relation must be group items.
6. If you specify the END-IF phrase, you must not specify the NEXT SENTENCE phrase.

" >

8-26 First Edition

The PROCEDURE DIVISION

General Rules

1. If the condition is true, either statement-1 or NEXT SENTENCE is executed as follows:

• If you specify statement-1, it is executed. Control then passes to the next executable
sentence following the IF statement, unless statement-1 contains a branch or
conditional statement, in which case control is transferred according to the rules for
that statement.
If you specify the NEXT SENTENCE phrase, control passes to the next executable
sentence.

• If you specify the ELSE/OTHERWISE clause, it is ignored.

For example,

IF BALANCE = 0 GO TO NOT-FOUND
ELSE NEXT SENTENCE.

IF X = 1.7 4 THEN MOVE 'M' TO FLAG
OTHERWISE MOVE 'N' TO SECOND-TIME.

IF ACCOUNT-FIELD = SPACES OR NAME = SPACES
ADD 1 TO SKIP-COUNT

ELSE PERFORM BYPASS.

2. If the condition is false, statement-1 or its replacement NEXT SENTENCE is bypassed,
and control passes as follows:

• If you specify statement-2, it is executed. Control then passes to the next executable
sentence, unless statement-2 contains a branch or conditional statement, in which case
control is transferred according to the rules for that statement.

• If you specify the NEXT SENTENCE phrase, control passes to the next executable
sentence.

• If you do not specify an ELSE/OTHERWISE clause, control passes to the next
executable sentence.

3. The IF statement is nested whenever statement-1 or statement-2 contains another IF
statement. In nested IF statements, ELSEs are paired with IFs in the following way. Any
ELSE encountered applies to the last preceding IF that is not already paired with an
ELSE. It is not required that the number of ELSEs in a sentence be the same as the
number of IFs, but the number of ELSEs must not exceed the number of IFs.
OTHERWISE follows the same pairing rule as ELSE with nested IFs.
For example,

IF X = Y
THEN IF A = B

THEN MOVE "*" TO SWITCH
ELSE MOVE "A" TO SWITCH

ELSE MOVE SPACE TO SWITCH.

The tree structure in Figure 8-2 represents the flow of this sentence.

First Edition 8-27

COBOL85 Reference Guide

Move
Space to
Switch

Q10166-1LA-U-0

FIGURE 8-2
Nested IF Structure

4. You can terminate the scope of the IF statement by an END-IF phrase at the same level
of nesting.

5. You can terminate the scope of the IF statement by a separator period for all levels of
nesting.

6. You can terminate the scope of a nested IF statement that already contains an ELSE
phrase by the ELSE of the containing IF statement.

Note

Chapter 4 explains in detail the following condition types. See Chapter 4 also for status-
name, negated conditions, and combined abbreviated conditions.

8-28 First Edition

The PROCEDURE DIVISION

Cdata-name-1
rCORRESPONDING "I J literal-1
L C O R R J j a r i t h - e x p r - 1

[̂ index-name-1

1. The relation condition causes a comparison of two operands. Its format is
CIS [NOT] GREATER THAN
IS [NOT] LESS THAN
IS [NOT] EQUAL TO
IS [NOT] GREATER THAN

OR EQUAL TO (da ta -name-2
IS [NOT] LESS THAN J literal-2

OR EQUAL TO [j arith-expr-2
I S [N O T] > [i n d e x - n a m e - 2 ,
IS [NOT] <
IS [NOT] =
IS [NOT] >=
IS [NOT] <=

8. The class condition determines whether an operand is numeric, alphabetic, lowercase
alphabetic, uppercase alphabetic, or contains only the characters in the set of characters
specified by the CLASS clause as defined in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION. Its format is

data-name IS [NOT] -<

NUMERIC
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ĉlass-name-1

9. The condition-name condition tests the value of a conditional variable. Its format is

[NOT] condition-name
Define condition-name as a level-88 data item in a record-description-entry in the
DATA DIVISION. The conditional variable is the data item immediately preceding the
level-88 item or items. It can also be a switch-status name. (See Chapter 4.)

10. The sign condition tests an arithmetic expression to determine whether its value is greater
than, less than, or equal to zero. The format is

r j - , f P O S I T I V E ^ |
fdata-name-i _s I NEGATIVE I
\ a n t h - e x p r f j ^ E R O J

11. You can combine two or more conditions by the logical operators AND and OR. The
format for a combined condition is

[NOT] condition-1 1 -T^jpl [NOT] condition-2

12. See the rules for CORRESPONDING at the beginning of this chapter.

INSPECT

r
r

Enables you to examine a character-string data item and to tally, replace, or tally and replace
occurrences of single characters or groups of characters in the data item.

First Edition 8-29

COBOL85 Reference Guide

Format 1
INSPECT data-name-1 TALLYING

data-name.,m Him™*} {"-3H riî i
I CHARACTERS |_1 AFTER J

INITIAL
{data-name-4~\literal-2 J

Format 2
INSPECT data-name-1 REPLACING

CHARACTERS BY fdata-name-6\ I**/ BEFORE 1
\literal-4 J I 1 AFTER J INITIAL

{data-name-7literal-5

' { g p } { { s r r 5 } h { r „ : r } [{ ^ } — *■ { ; s r r 7 }]

Format 3
INSPECT dota-name-I TALLYING

data-name

REPLACING

,m ({{^aj {srr3}} r{™}
CHARACTERS

INITIAL |*-*-«"»'-a~|\lileral-2 J J

aMAcnESB {-—-} [{«} «.™_ {_rrl]

{gjp} {{̂ rr5} ax {zzr*} [{MS?} ,n,t,al {data-name-7literal-5

Syntax Rules
1. The operand after INSPECT (data-name-1) must be a group item or an elementary item

described (implicitly or explicitly) as USAGE IS DISPLAY.
2. The operands of all clauses except TALLYING can be either data items or literals. If

they are data items, these operands must reference elementary alphabetic, alphanumeric
or numeric items described (implicitly or explicitly) as USAGE IS DISPLAY.

3. If they are literals, each of these operands must be a nonnumeric literal and can be any
figurative constant, except ALL.

4. literal-1 through literal-5 and data-name-3 through data-name-7 can be characters or
groups of characters.

5. Operands of INSPECT can be no longer than 32767 bytes in length.

8-30 First Edition

The PROCEDURE DIVISION

Syntax Rules for Formats 1 and 3
6. The operand of TALLYING (data-name-2) must be an elementary numeric data item.
7. If either literal-1 or literal-2 is a figurative constant, the figurative constant refers to an

implicit one-character data item.

Syntax Rules for Formats 2 and 3
8. The size of literal-4 or data-name-6 must be equal to the size of literal-3 or data-name-5.

When you use a figurative constant as literal-4, the size of the figurative constant is
equal to the size of literal-3 or the size of data-name-5.

9. When you use the CHARACTERS phrase, literal-4, literal-5, or the size of data-name-6
and data-name-7 must be one character long.

10. When you use a figurative constant as literal-3, then literal-4, or data-name-6 must be
one character long.

General Rules

1. The INSPECT statement enables examination of a character-string item, permitting
various combinations of the following actions:

• Counting appearances of a specified character
• Replacing a specified character or group of characters by an alternative
• Qualifying and limiting the above actions according to the appearance of other

specific characters

Inspection includes the comparison cycle, the establishment of boundaries for the
BEFORE or AFTER phrase, and the mechanism for tallying and/or replacing. It begins
at the leftmost character position of data-name-1 and proceeds from left to right to the
rightmost character position, as described in General Rules 4 through 6.

2. In the INSPECT statement, COBOL85 treats the contents of data-names 1,3,4, 5, 6,
and 7 as follows:

• If you describe any of these data-names as alphanumeric, the INSPECT statement
treats the contents of each such field as a character-string.

• If you describe any of these data-names as alphanumeric edited, numeric edited, or
unsigned numeric, COBOL85 iaspects the data item as though you redefined it as
alphanumeric and the INSPECT statement refers to the redefined data item.

• If you describe any of these data-names as signed numeric, COBOL85 inspects the
data item as though you moved it to an unsigned numeric data item of the same length.

3. All references to literal-1, literal-2, literal-3, literal-4, and literal-5 apply equally to the
contents of data-names 3, 4, 5, 6, and 7, respectively.

4. During inspection of the contents of data-name-1, COBOL85 tallies each properly
matched occurrence of literal-1 (Formats 1 and 3) and/or replaces each properly matched
occurrence of literal-3 by literal-4 (Formats 2 and 3).

First Edition 8-31

COBOL85 Reference Guide

5. The comparison operation to determine the occurrences of literals to be tallied and/or
replaced (literals 1 and 3) occurs as follows:
• COBOL85 considers the operands of the TALLYING and REPLACING phrases in

the order in which you specify them in the INSPECT statement. The first literal is
compared to an equal number of contiguous characters, starting with the leftmost
character position in the data item referenced by data-name-1. The literal and that
portion of data-name-1 match if, and only if, they are equal character for character.

• If no match occurs in the comparison of the first literal, the comparison is repeated
with each successive literal, if any, until either a match is found or there is no next
successive literal. When there is no next successive literal, the character position in
data-name-1 immediately to the right of the leftmost character position considered in
the last comparison cycle is considered as the leftmost character position, and the
comparison cycle begins again with the first literal.

• Whenever a match occurs, tallying and/or replacing takes place as described in
General Rules 8 and 9. The character position in data-name-1 immediately to the
right of the rightmost character position that participated in the match is now
considered to be the leftmost character position of data-name-1 and the comparison
cycle starts again with the first literal.

• The comparison operation continues until the rightmost character position of data-
name-1 has participated in a comparison or has been considered as the leftmost
character position. When this occurs, inspection is terminated.
This series of steps is represented in Figure 8-3, for the statements

MOVE 0 TO TALLY-WORD.
INSPECT TARGET-WORD TALLYING TALLY-WORD FOR ALL 'SS' .

The braces mark the two characters being inspected for a match with 'SS' in each step.
• If you specify the CHARACTERS phrase, an implied one-character operand

participates in the cycle described in the preceding paragraphs, except that no
comparison to the contents of data-name-1 takes place. This implied character is
considered always to match the leftmost character of data-name-1 participating in the
current comparison cycle.

6. If you do not specify the BEFORE or AFTER phrase, literal-1, literal-3, or the implied
operand of the CHARACTERS phrase participates in the comparison operation.
If you specify the BEFORE phrase, the associated literal-1, literal-3, or the implied
operand of the CHARACTERS phrase participates only in those comparison cycles that
involve that portion of data-name-1 from its leftmost character position up to, but not
including, the first occurrence of literal-2 or literal-5. COBOL85 determines the position
of this first occurrence before beginning the first cycle of the comparison operation. If,
on any comparison cycle, literal-1, literal-3, or the implied operand of the
CHARACTERS phrase is not eligible to participate, it is considered not to match the
contents of data-name-1. If there is no occurrence of literal-2, literal-5 within data-
name-1, then the associated literal-1, literal-3, or the implied operand of the
CHARACTERS phrase participates in the comparison operation as though you did not
specify the BEFORE phrase.
If you specify the AFTER phrase, the associated literal-1, literal-3, or the implied operand
of the CHARACTERS phrase can participate only in those comparison cycles that involve

8-32 First Edition

The PROCEDURE DIVISION

that portion of data-name-1 from the character position immediately to the right of the
rightmost character position of the first occurrence of literal-2, or literal-5. COBOL85
determines the position of this first occurrence before beginning die first cycle of the
comparison operation. If, on any comparison cycle, literal-1, literal-3, or the implied
operand of the CHARACTERS phrase is not eligible to participate, it is considered not to
match the contents of data-name-1. If there is no occurrence of literal-2, literal-5 within
data-name-1, then the associated literal-1, literal-3, or the implied operand of the
CHARACTERS phrase is never eligible to participate in the comparison operation.

TARGET-WORD

First Step

TARGET-WORD

TALLY-WORD

M I S S 1 S S I P P

TALLY-WORD

Second Step

TARGET-WORD TALLY-WORD

Third Step

r

r

TARGET-WORD TALLY-WORD

Sixth step M I S S I S S I P P I 2

TARGET-WORD TALLY-WORD

Last Step M I S S I S S I P P I 2

Q10166-1LA-15-0

FIGURE 8-3
Steps in INSPECT... TALLYING

1. Execution of the INSPECT statement does not initialize the content of data-name-2.
8. The TALLYING clause causes character-by-character or character-group by character-

group comparison, from left to right, of data-name-1 with data-name-3 or literal-1. The
count is accumulated in data-name-2. See example 1 below.

First Edition 8-33

COBOL85 Reference Guide

• When you specify the AFTER INITIAL clause, the counting process begins only
after detection of a character or character-group in data-name-1 matching the
operand following INITIAL. If you specify BEFORE INITIAL operand, the
counting process terminates upon encountering a character in data-name-1 that
matches the operand following INITIAL. See examples 2 and 4 below.

• If you specify the ALL phrase, the content of data-name-2 is incremented by one for
each occurrence of the operand after FOR matched within the content of data-name-1.

• If you specify the LEADING phrase, the content of data-name-2 is incremented by
one for each contiguous occurrence of the operand after FOR matched within the
content of data-name-1, provided that the leftmost such occurrence is at the point
where the comparison began and where the operand after FOR was eligible to
participate.

• If you specify the CHARACTERS phrase, the content of data-name-2 is
incremented by one for each character in data-name-1.

9. The reserved words ALL, LEADING, and FIRST apply to each succeeding BY phrase
until the next adjective appears.

10. The REPLACING clause causes replacement of characters under specified conditions.

• If you specify the BEFORE INITIAL operand, replacement does not continue after
detection of a character in data-name-1 matching the operand after INITIAL. If you
specify AFTER INITIAL, replacement does not commence until detection of a
character in data-name-1 matching the operand after INITIAL.

• If you specify the ALL phrase, each occurrence of the operand after REPLACING
matched within the content of data-name-1 is replaced by the operand after BY.

• If you specify the LEADING phrase, each contiguous occurrence of the operand
after REPLACING matched within the content of data-name-1 is replaced by the
operand after BY, provided that the leftmost occurrence is at the point where the
comparison began and where the operand after REPLACING was eligible to
participate. See example 6 below.

• If you specify the FIRST phrase, the leftmost occurrence of the operand after
REPLACING matched within the content of data-name-1 is replaced by the operand
after BY. See example 5 below.

• When you specify the CHARACTERS phrase, each character in data-name-1 is
replaced by the operand after BY. See example 3 below.

11. A Format 3 INSPECT statement is executed as though you wrote two separate INSPECT
statements. The first contains only a TALLYING clause, the second contains only a
REPLACING clause. See example 4 below.

Examples
1. INSPECT name TALLYING counter FOR ALL 'L'.

N a m e B e f o r e C o u n t e r A f t e r N a m e A f t e r

L I L L Y 3 L I L L Y
S M A L L 2 S M A L L

8-34 First Edition

T/je PROCEDURE DIVISION

2. INSPECT name TALLYING counter FOR LEADING 'B' AFTER INITIAL 'A'
REPLACING CHARACTERS BY 'X'.

N a m e B e f o r e C o u n t e r A f t e r N a m e A f t e r

A B A C K 1 X X X X X X X
C A B B A G E 2 X X X X X X X

3. INSPECT name REPLACING CHARACTERS BY *S* BEFORE INITIAL 7.

N a m e B e f o r e C o u n t e r A f t e r N a m e A f t e r

A B D . 9 9 $ $ $ $ $. 9 9

4. INSPECT name TALLYING counter FOR CHARACTERS AFTER INITIAL 'E'
REPLACING ALL 'B' BY 'A'.

N a m e B e f o r e C o u n t e r A f t e r N a m e A f t e r

D E B A T E 4 D E A A T E
I B E X 1 I A E X

5. INSPECT name REPLACING FIRST 'A' BY 'P' AFTER INITIAL »M\

N a m e B e f o r e C o u n t e r A f t e r N a m e A f t e r

L L A M A A L L A M P A
L L O Y D L L O Y D

6. INSPECT 'ABC/DEF' REPLACING LEADING 'ABC BY '123'.

N a m e B e f o r e C o u n t e r A f t e r N a m e A f t e r

A B C / D E F 1 2 3 / D E F

First Edition 8-35

COBOL85 Reference Guide

MERGE

MOVE

Combines two or more sorted files on a set of specified keys, and during the process makes
records available, in merge order, to an output procedure or file.

Format

MERGE file-name-1 ON ^d^^nding1' KEY data-name-1 1> data-name-2] • • •

_™ {dE^CENDI^} KEY data-name-3 (> data-name-4] ■ • • J • • •

[COLLATING SEQUENCE IS alphabet-name)

USING file-name-2, file-name-3 [, file-name-4] • • •

OUTPUT PROCEDURE IS procedure-name-1 -f ™^UGH\ procedure-name-2

.GIVING file-name-5 [, file-name-6] • • •

Chapter 14 discusses the MERGE statement.

Transfers data from one area of main storage to another, performing conversion and editing
as indicated.

Format 1
fdata-name-l~\

MOVE i literal V JO data-name-2 [ROUNDED] [, data-name-3 [ROUNDED]] • • •
[^arith-expr J

Format 2

MOVE fcORRESPONPINGl data-name-112 data-name-2 [ROUNDED]

Syntax Rules
1. The data-name-1, arith-expr, and the literal represent the sending area; data-name-2,

data-name-3, and so on, represent the receiving area.
2. When you specify the CORRESPONDING phrase, both operands must be group items.

" >

~

8-36 First Edition

The PROCEDURE DIVISION

3. An index data item cannot be an operand of MOVE.
4. Prime Extension: The use of ROUNDED and of an arithmetic expression in a MOVE

statement is a Prime extension.

General Rules

1. When either the sending or the receiving field is a group item, characters are moved
without conversion and without editing.

2. During elementary moves, editing occurs and alignment is performed according to the
alignment rules in the section Data Representation and Alignment in Chapter 4. Any
necessary data conversion is done as described in the following rules.

3. Moves of numeric items to numeric or numeric edited fields follow these rules:

• The items are aligned by decimal point, with generation of zeros or truncation on
either end, as required.

• When the types of the source field and receiving field differ, conversion to the type
of the receiving field takes place.

• If the receiving field is numeric edited, the item moved can have special editing
performed on it such as suppression of zeros, insertion of a dollar sign, and decimal
point alignment, as specified by the PICTURE clause of the receiving field.

• Conversion of signs follows these rules. When the receiving item is signed,
COBOL85 places the sign of the sending item in it. When the sending item is
unsigned, a positive sign is generated. When the receiving item is unsigned, the
absolute value of the sending item is moved.

4. When the sending item is alphanumeric and the receiving area is numeric or numeric
edited, COBOL85 moves data as if the sending item were an unsigned integer. The
discussion in General Rule 3 applies.

5. For moves to and from alphabetic and alphanumeric fields, the following rules apply:

• COBOL85 places the characters in the receiving area from left to right (unless
JUSTIFIED RIGHT applies).

• If the receiving field is not completely filled by data being moved, the remaining
positions are filled with spaces.

• If the source field is longer than the receiving field, the move is terminated as soon
as the receiving field is filled, resulting in right truncation.

6. If the sending item is signed numeric and the receiving field is alphanumeric, the sign is
not moved. If the sign occupies a separate character position, that character is not moved.
The discussion in General Rule 5 applies.

7. If the sending item is nonnumeric and the receiving item is numeric, the sending field is
assumed to be a numeric integer, and a numeric move is generated.

8. When you use overlapping fields as operands, results are undefined.
9. When you use the CORRESPONDING phrase, data-name-1 and data-name-2 must be

group items. The contents of elementary items subordinate to data-name-1 are moved to
elementary items subordinate to data-name-2 that are defined by the same names. The

First Edition 8-37

COBOL85 Reference Guide

move is treated as a series of elementary moves. See the rules for CORRESPONDING at
the beginning of this chapter.

10. You can specify the ROUNDED phrase only for numeric moves. The rules are the same
as those listed for arithmetic statements at the beginning of this chapter.

11. A MOVE statement can specify any of the various types of moves summarized in Table 8-3.

TABLE 8-3
Moves by Category

Receiving Field

Sending Data Item

\ \ \ % % %

%x % % %> \ tk %. %, \

Alphabetic

Alphanumeric edited

Numeric integer Y Y Y Y

Numeric noninteger Y Y Y Y

Numeric edited

Alphanumeric* Y Y Y Y

COMP and BINARY Y Y Y Y

COMP-1 Y Y Y Y

COMP-2 Y Y Y Y

COMP-3 and PACKED-DEC Y Y Y Y

Y = Permitted.

* Sending field must contain appropriate numeric data when moved to numeric fields.

8-38 First Edition

The PROCEDURE DIVISION

'

r

r
r

MULTIPLY

Computes the product of two numeric data items and stores the result.

Format 1
fdata-name-f]

MULTIPLY J literal-1 >BY data-name-2 [ROUNDED] [, data-name-3 [ROUNDED]] • • •
\̂ arith-expr-l J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 2

(data-name-1^ f data-name-2~\
MULTIPLY -I literal-1 V BY < literal-2 V

L arith-expr-1 J t arith-expr-2 J

GIVING data-name-3 [ROUNDED] [, data-name-4 [ROUNDED] • • •

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 3

MULTIPLY irQopESP°NDTNG}^to-wflmg'7 -IX data-name-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Syntax Rules
1. Each data-name must refer to an elementary numeric item, except that in Format 2 the

operands after GIVING must be elementary numeric or numeric edited.
2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. The composite of operands in

Format 1 must not contain more than 18 decimal digits.

First Edition 8-39

~ \

COBOL85 Reference Guide

4. In Format 3, data-name-1 and data-name-2 must be group items.
5. Prime Extension: The use of the CORRESPONDING phrase and the use of arithmetic

expressions in MULTIPLY statements are Prime extensions.

General Rules

1. In Format 1, the product is stored in data-name-2.
2. When you use the GIVING phrase, the product is stored in data-name-3, data-name-4,

and so on.
3. See die section titled Algebraic Signs in Chapter 4 for the rules for signs.
4. The MULTIPLY statement is governed by the rules for GIVING, ROUNDED,

CORRESPONDING, ON SIZE ERROR, and NOT ON SIZE ERROR in the section
titled Arithmetic Statements in the PROCEDURE DIVISION, at the beginning of this
chapter, and by the rules for arithmetic statements discussed in Chapter 4.

5. In Format 3, elementary items subordinate to data-name-1 arc multiplied by elementary
items subordinate to data-name-2 that are defined with the same names. Each result is
stored in the associated elementary item subordinate to data-name-2.

6. The END-MULTIPLY clause delimits the scope of the MULTIPLY statement. For more
information, see the section Scope Terminators at the beginning of this chapter.

NOTE — Prime Extension
Allows comment entries in the PROCEDURE DIVISION.

Format
NOTE comment-entry.

Syntax Rules
1. An entry of any length can follow NOTE.
2. If NOTE is the first statement in a paragraph, the compiler treats the entire paragraph as

a comment. If NOTE is not the first statement in a paragraph, only the text through the
first period is treated as a comment.

General Rule
NOTE can appear only in the PROCEDURE DIVISION.

Example
MOVE ALL 1 TO ITEM-1.

NOTE THE FOLLOWING TEST ALLOWS OPENING OF A SECOND DISK
INPUT FILE IF THE SERIAL NUMBER IS ALL l's,

8-40 First Edition

OPEN

The PROCEDURE DIVISION

OTHERWISE DISK-FILE-1 WILL BE CLOSED, REOPENED,
AND READ AGAIN.

IF NAME = ITEM-1 PERFORM 150-SECOND-INPUT
OTHERWISE PERFORM 180-REOPEN.

Initiates the processing of files and enables other input/output operations, such as label
checking, reading, and writing.

Format 1

OPEN <
f INPUT file-name-1 [, file-name-2]
J OUTPUT file-name-3 [, file-name-4]

1-0 file-name-5 [, file-name-6]
EXTEND file-name-7 [, file-name-8]

Format 2

{INPUT file-name-1 [, file-name-2]
OUTPUT file-name-3 [, file-name-4]
l-O file-name-5 [, file-name-6]

Format 3

OPEN -f INPUT {file-name-1 [WITH NO REWIND] >
OUTPUT {file-name-2 [WITH NO REWIND] >

Chapters 9, 10, 11, and 12 describe the use of the OPEN statement with sequential files,
indexed files, relative files, and tape files, respectively.

PERFORM
Transfers control explicitly to one or more procedures, and returns control implicitly to the
normal sequence after execution of the specified procedures.

Format 1

PERFORM procedure-name-1 f THROUGH ~) . . .""fl
1 THRU J Procedure-name-2

[imperative-statement-1 END-PERFORM]

First Edition 8-41

COBOL85 Reference Guide

Format 2

PERFORM , .1" ("THROUGH 1procedure-name-1 I <J >-I thru f Procedure-name-2

{ integer "1
data-name-1 > TIMES
arith-expr-1 J

[imperative-statement-1 END-PERFORM]

Format 3

PERFORM procedure-name-1 fTHROUGH1
I THRU I Procedure-name-2

UNTIL condition-1

[imperative-statement-1 END-PERFORM]

Format 4

PERFORM ! PTHROI IfH ~lprocedure-name-1 -I ^^g W procedure-name-2

* *

"

VARYING S^-name.2\
[̂ index-name-1J

{data-name-3

index-name-2
literal-1
arith-expr-1

fdata-name-4~\
BY < literal-2 ± UNTIL condition-1

[arith-expr-2 J

f data-name-5

{data-name-6

index-name-4
literal-3
arith-cxpr-2

(data-name-7~\
BY J literal-4 I UNTIL condition-2

[̂ arith-expr-4 J

[imperative-statement-1 END-PEFORM]

8-42 First Edition

Tfie PROCEDURE DIVISION

Syntax Rules
1. The words THROUGH and THRU are equivalent.
2. Each data-name represents an elementary numeric item described in the DATA

DIVISION. In Format 2, data-name-1 must represent a numeric integer.
3. Each literal represents a numeric integer.
4. A procedure-name can be either a section-name or a paragraph-name.
5. If you use an index-name in the VARYING or AFTER phrase, then

• The data-name in the associated FROM and BY phrases must be an integer data
item.

• The literal in the associated FROM phrase must be a positive integer. The arithmetic
expression must evaluate to a positive integer.

• The literal in the associated BY phrase must be a nonzero integer. The arithmetic
expression must evaluate to a positive integer.

6. If you specify an index-name in the FROM phrase, then

• The data-name in the associated VARYING or AFTER phrase must be an integer
data item.

• The data-name in the associated BY phrase must be an integer data item.
• The literal in the associated BY phrase must be an integer.

7. A literal in the BY phrase must not be zero.
8. condition-1, condition-2, and condition-3 can be any conditional expression described in

Chapter 4.
9. When you specify both procedure-name-1 and procedure-name-2 and either is the name

of a procedure in a declarative section, then both must be paragraph-names in the same
declarative section.

10. Prime Extension: The use of arithmetic expressions in FROM and BY clauses is a
Prime extension.

11. If you omit the FROM and BY clauses, the value 1 is assumed.
12. If you omit procedure-name-1, you must specify imperative-statement-1 and the END-

PERFORM phrase; if you specify procedure-name-1, do not specify imperative-
statement-1 and the END-PERFORM phrase.

13. In Format 4, if you omit procedure-name-1, do not specify the AFTER phrase.
14. In Format 2, if you specify the END-PERFORM phrase, the use of arith-expr-1 is not

allowed.

General Rules

1. When you specify procedure-name-1, the PERFORM statement is an out-of-line
PERFORM statement; when you omit procedure-name-1', the PERFORM statement is an
in-line PERFORM statement.

First Edition 8-43

COBOL85 Reference Guide

Note
Unless specially qualified by the word in-line or out-of-line, all the general rules that apply
to the out-of-line PERFORM statement also apply to the in-line PERFORM statement.

2. data-name-4 and data-name-7 must not have a zero value.
3. If you write the PERFORM stalement with no options, control is transferred to the first

statement of procedure-name-1. At the completion of procedure-name-1, control is
returned to the next executable statement following the PERFORM statement. If
procedure-name-1 is a paragraph-name, control is returned after the last statement of
procedure-name-1. If procedure-name-1 is a section-name, control is returned after the
last statement of the last paragraph in procedure-name-1.

4. If you specify procedure-name-2 as a paragraph-name, control is returned to the
statement following the PERFORM after the last statement of that paragraph is executed.

5. If you specify procedure-name-2 as a section-name, control is returned to the statement
following the PERFORM after the last statement of the last paragraph of that section is
executed.

6. In Formats 1 and 2, if you use the THROUGH option, multiple paragraphs or sections
can be executed before control is returned to the statement after PERFORM.

7. In Format 2, the following rules apply:

• If you use the TIMES option, procedures are performed the number of times
specified by data-name-1, arith-expr-1, or integer.

• If data-name-1, arith-expr-1, or integer is initially zero or negative, the PERFORM
statement is not executed; control passes to the statement following die PERFORM
statement.

• During execution of the PERFORM statement, if the value of data-name-1 or arith-
expr-1 changes, the number of times the procedure is executed is, nevertheless, that
of the initial value of data-name-1.

8. In Formats 3 and 4, the condition can be of any type, including the CORRESPONDING
relation condition.

9. In Format 3, the following rules apply:

• If you use the UNTIL option, successive execution of procedures occurs until
condition-1 is satisfied.

• condition-1 is tested prior to execution of the PERFORM statement. If the condition
is not true, the specified procedures are performed until the condition is true. Control
is then passed to the next statement after PERFORM. If the condition is true prior to
execution of the PERFORM statement, procedure-name-1 is not executed and
control passes to the next statement after PERFORM.

10. In Format 4, the following rules apply:

• If you vary one identifier, data-name-2 is set to the current value of data-name-3,
arith-expr-1, index-name-1, or literal-1 at the point of initial execution of the
PERFORM statement. If the condition is true, the procedures are not executed and
control passes to the next statement after PERFORM. If the condition is false,
procedure-name-1 and procedure-name-2 are executed once.

8-44 First Edition

The PROCEDURE DIVISION

The value of data-name-2 is then incremented or decremented by the value in data-
name-4, arith-expr-2, or literal-2. The condition is reevaluated. The cycle continues
until the condition is true, at which point control is transferred to the next statement
following the PERFORM statement. See Figure 8-4.
At the termination of the PERFORM statement, data-name-2 or index-name-1 has a
value that differs from the last used setting by the value of data-name-4, arith-expr-2,
or literal-2. If the condition was true before initial execution of the PERFORM
statement, data-name-2 or index-name-1 contains the current value of data-name-3,
literal-1,arith-expr-1, or index-name-2.

r
f Start J

Set
data-name-2
to Current

FROM Value

r Execute
procedure-name-1

Through
procedure-name-2

Augment
data-name-2 With
Current BY Value

Q10166-1L.-X-16-0

FIGURE 8-4
Logic of PERFORM Statement (One Identifier Varied)

First Edition 8-45

COBOL85 Reference Guide

8-46 First Edition

When you vary two identifiers, data-name-2 and data-name-5 are set to the current
value of data-name-3 and data-name-6, respectively, condition-1 is then evaluated. If
it is true, control is transferred to the next statement; if false, condition-2 is
evaluated. If condition-2 is false, procedure-name-1 and procedure-name-2 are
executed once, then data-name-5 is augmented by data-name-7, arith-expr-4, or
literal-4, and condition-2 is evaluated again. This cycle of evaluation and
augmentation continues until condition-2 is true. When condition-2 is true, data-
name-5 or index-name-3 is set to the value of literal-3, data-name-6, index-name-4
(if you vary index-name-3), or arith-expr-3.
data-name-2 is augmented by data-name-4, literal-2, or arith-expr-2, and condition-]
is reevaluated. The PERFORM statement is completed if condition-1 is true; if not,
the cycles continue until condition-1 is true.
During the execution of the procedures associated with the PERFORM statement,
any change to the VARYING data-name, the BY data-name, the AFTER data-name,
or the FROM data-name affect the operation of the PERFORM statement.
data-name-5 goes through a complete cycle (FROM, BY, UNTIL) each time data-
name-2 is varied. See Figure 8-5.
At the termination of the PERFORM statement, data-name-5 contains the current value
of data-name-6. data-name-2 has a value that exceeds the last used setting by one
increment or decrement value, unless condition-1 was true when the PERFORM
statement began, in which case data-name-2 contains the current value of data-name-3.
When you vary three or more identifiers, the mechanism is an extension of the one
for two identifiers. See Figure 8-6.
After the completion of the PERFORM statement, each data item varied by an
AFTER phrase contains the current value of the data-name in the associated FROM
phrase, data-name-2 has a value that exceeds its last used setting by one increment or
decrement value, unless condition-1 is true when the PERFORM statement begins, in
which case data-name-2 contains the current value of data-name-3.
The following example illustrates a Format 4 PERFORM statement:

START-PARA.
PERFORM INT-PARA

VARYING INDXl FROM 1 BY 1
UNTIL INDXl > 2

AFTER INDX2 FROM 1 BY 1
UNTIL INDX2 > 12

AFTER INDX3 FROM 1 BY 1
UNTIL INDX3 > 7.

INT-PARA.
MOVE ZEROS TO DEPT-TOTAL(INDXl, INDX2, INDX3).

The PROCEDURE DIVISION

C Start J

Set
data-name-2 and
data-name-5 to

Current FROM Values

Execute
procedure-name-1

Through
procedure-name-2

Augment
data-name-5

With Its Current
BY Value

C End)

Set
data-name-5 to

Its Current
FROM Value

Augment
data-name-2

With Its Current
BY Value

©
Q10I66-1LA-17-0

FIGURE 8-5
Logic of PERFORM Statement (Two Identifiers Varied)

First Edition 8-47

COBOL85 Reference Guide

C Start J

''

Set
data-name-2,

data-name-5, and
data-name-8 To

Current FROM Value

i ▶

Execute
procedure-name-1

Through
procedure-name-2

Set
data-name-8
to Its Current
FROM Value

Set
data-name-5
to Its Current
FROM Value

Augment
data-name-8

With Its Current
BY Value

Augment
data-name-5

With Its Current
BY Value

Augment
data-name-1

With Its Current
BY Value

©
Q10166-1LA-18-0 1

FIGURE 8-6
Logic of PERFORM Statement (Three Identifiers Varied)

8-48 First Edition

The PROCEDURE DIVISION

11. If a sequence of statements referred to by a PERFORM statement includes another
PERFORM statement, the sequence of procedures associated with the included
PERFORM must itself be either totally included in, or totally excluded from the logical
sequence encompassed by the first PERFORM. Thus, an active PERFORM statement,
whose execution point begins within the range of another active PERFORM statement,
must not allow control to pass to the exit of the other active PERFORM statement.
Furthermore, two or more such active PERFORM statements cannot have a common
exit. See Figure 8-7.

12. In the overlapping PERFORM sequence illustrated in Figure 8-7, the second PERFORM
statement (statement d) must not be executed while the first PERFORM statement
(statement x) is active. Otherwise, program-control code at statement m causes an
erroneous return to the statement following statement x.

13. The statements contained within the range of procedure-name-1 (through procedure-
name-2, if you specify one) for an out-of-line PERFORM statement or contained within
the PERFORM statement itself for an in-line PERFORM statement are called the
specified set of statements.

14. The END-PERFORM phrase delimits the scope of the in-line PERFORM statement. See
the section Scope Terminators at the beginning of this chapter.

15. If you specify an in-line PERFORM statement, an execution of the PERFORM
statement is complete after the last statement contained within it is executed.
The following example illustrates an in-line PERFORM statement:

IF A > B
PERFORM VARYING INDXl FROM 1 BY 1 UNTIL INDXl > 7

ADD 1 TO TABLE1(INDXl)
DISPLAY TABLE1(INDXl)

END-PERFORM
ELSE

NEXT SENTENCE.

First Edition 8-49

COBOL85 Reference Guide

READ

Included PERFORM Squence

x PERFORM a THRU m

d PERFORMfTHRUj
f

j
m

Overlapping PERFORM Squence
x PERFORM a THRU m

f
m

d PERFORMfTHRUj

FIGURE 8-7
Permissible PERFORM Sequences

Excluded PERFORM Sequence

x PERFORM a THRU m

d PERFORM f THRU j
h
m

f

Q10166-ILA-19-0

Makes available a record from a file.

Format 1
READ file-name RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2
READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

8-50 First Edition

- >

*)

Trie PROCEDURE DIVISION

Format 3
READ file-name RECORD [INTO data-name-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

Format 4
READ file-name RECORD [INTO data-name-1]

[KEY IS data-name-2]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

Chapters 9, 10, 11, and 12 describe the use of the READ statement with sequential files,
indexed files, relative files, and tape files, respectively.

READY TRACE — Prime Extension
Enables the display of trace information on the terminal.

Format
READY TRACE.

General Rules

1. After a READY TRACE statement is executed, each time a paragraph or section in the
PROCEDURE DIVISION is encountered, that paragraph or section name is output to the
terminal to provide debugging information.

2. Do not use READY TRACE before the first paragraph-name in the PROCEDURE
DIVISION.

3. Terminate the display of trace information by coding the RESET TRACE statement.

Example
When you mn the sample program at the end of this chapter with READY TRACE inserted
at the beginning of the PROCEDURE DIVISION, the actual flow of program execution is
displayed. The following example illustrates sample output.

First Edition 8-51

COBOL85 Reference Guide

OK, RESUME OLDCASH
t r a c e : 0 1 0 - G E T- J O B I N F O
ENTER MONTH(ALPHA)
NOVEMBER, 1987
ENTER JOB CODE
2 5
trace: 020-NEW-DETAIL-PAGE
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXIT
trace: 030-PROCESS-DETAIL
trace: 035-READ-AND-PRINT
t race: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
t race: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
t race: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 050-DEPT-TOTALS
trace: 035-READ-AND-PRINT
trace: 040-EDIT
trace: 060-REJECTS
trace: 035-READ-AND-PRINT
t race: 040-EDIT
trace: 0 60-REJECTS
trace: 035-READ-AND-PRINT
t race: 040-EDIT
trace: 0 60-REJECTS
trace: 035-READ-AND-PRINT
t race: 040-EDIT
trace: 060-REJECTS
trace: 070-TOTALS
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXIT
trace: 0 8 0-BALANCE-TOTALS
trace: 150-NEW-PAGE
trace: 150-NEW-PAGE-EXIT
trace: 090-PROCESS-TAPE
IS TAPE OUTPUT DESIRED—ENTER YES OR NO
NO
NO TAPE

END OF RUN
OK,

~)

'

8-52 First Edition

The PROCEDURE DIVISION

RELEASE
Transfers records to the initial phase of a SORT operation.

Format
RELEASE record-name [FROM data-name]

Chapter 14 discusses the RELEASE statement.

RESET TRACE — Prime Extension
Turns off the display of trace information.

Format
RESET TRACE.

General Rules

1. The RESET TRACE statement has meaning only after the execution of a READY
TRACE statement.

2. You cannot use RESET TRACE before the first paragraph-name in the PROCEDURE
DIVISION.

RETURN
Obtains sorted records from the final phase of a SORT operation.

Format
RETURN file-name RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-RETURN]
The RETURN statement is discussed in Chapter 14.

REWRITE

Logically replaces a record existing in a disk file.

First Edition 8-53

COBOL85 Reference Guide

Format 1
REWRITE record-name [FROM data-name]

[END-REWRITE]

Format 2
REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

Chapters 9, 10, and 11 describe the use of the REWRITE statement with sequential files,
indexed files, and relative files, respectively.

SEARCH
Searches a table for a table element that satisfies the specified condition, and adjusts the
associated index-name to indicate that table element.

Format 1

SEARCH data-name-1 I VARYING Sdata-name-2 \~\
I \ ^ i ndex -name- l J

[AT END imperative-statement-1]

[END-SEARCH]

8-54 First Edition

{ W H E N c o n m . n . 1 { g g S S S S S ^ - ^

^

^

T/7e PROCEDURE DIVISION

Format 2
SEARCH ALL data-name-1 [AT END imperative-statement-1]

WHEN data-name-, ris EQUAL TO I f*?ja~name.3'1 is - — I I llteral'1^ J [a r i t h - e x p r - 1
condition-name-1

r

r

r
r

AND I S E Q t M L T O | f ^ — 5 '-* [arith-expr-2
condition-name-2

data-name-4 < _v^"- °v' ^ -^ literal-2

{imperative-statement-2NEXT SENTENCE

[END-SEARCH]

Syntax Rules
1. In Formats 1 and 2, data-name-1 must not be subscripted or indexed, but its description

must contain an OCCURS clause.
2. Unless you use the VARYING clause, the description of data-name-1 must contain an

INDEXED BY clause.
3. When you specify data-name-2, you must describe it as USAGE IS INDEX, or as a

numeric elementary data item without any positions to the right of the assumed decimal
point.

4. In Format 1, condition-1 or condition-2 can be any condition as described in the section
Conditional Expressions in Chapter 4.

5. In Format 2, you must define all referenced condition-names as having only a single
value. The data-name associated with a condition-name must appear in the KEY clause
of data-name-1. Each data-name-2 or data-name-4 can be qualified. Further, each data-
name-2 or data-name-4 must be indexed by the first index-name associated with data-
name-1 along with other indexes or literals as required.

6. In Format 2, when a data-name in the KEY clause of data-name-1 is referenced, or
when a condition-name associated with a data-name in the KEY clause of data-name-1
is referenced, all preceding data-names in the KEY clause of data-name-1 or their
associated condition-names must also be referenced.

7. The END-SEARCH clause delimits the scope of the SEARCH statement. For more
information, see the section Scope Terminators at the beginning of this chapter.

8. If you specify the END-SEARCH phrase, you must not specify the NEXT SENTENCE
phrase.

First Edition 8-55

COBOL85 Reference Guide

General Rules

1. The Format 1 SEARCH statement enables a serial search operation, starting with the
current index setting.

• If, at the start of execution of the SEARCH statement, the index-name associated
with data-name-1 contains a value greater than the highest permissible occurrence
number for data-name-1, the specified imperative-statement-1 is executed. If the AT
END phrase is not specified, control passes to the next executable sentence.

• If, at the start of execution of the SEARCH statement, the index-name associated
with data-name-1 contains a value not greater than the highest permissible
occurrence number for data-name-1, the SEARCH statement operates by evaluating
the conditions in the order you write them, making use of the index settings,
wherever specified, to determine the occurrence of those items to be tested. If none
of the conditions is satisfied, the index-name for data-name-1 is incremented to
obtain reference to the next occurrence.

• The process is repeated, using the new index-name settings. If the new value of the
index-name settings for data-name-1 corresponds to a table element outside the
permissible range of occurrence values, the search terminates as indicated in the
paragraph above. If one of the conditions is satisfied upon its evaluation, the search
terminates immediately and the imperative statement associated with that condition is
executed; the index-name remains set at the occurrence that satisfied the condition.

For example, the following code assumes that you define the table MONTH-TAB as
shown in the example with OCCURS. The SEARCH statement causes a search of
MONTH-TAB, changing the value of INDX until the element whose position is
referenced by INDX has the value of MONTH-ACCEPT.

05 MONTH-TAB OCCURS 12 TIMES INDEXED BY INDX
ASCENDING KEY MONTH-NO.
10 MONTH-NO PIC 99.
10 MONTH-VALUE PIC XXX.

FIND-MONTH.
SEARCH MONTH-TAB

WHEN MONTH-NO(INDX) = MONTH-ACCEPT
MOVE MONTH-VALUE(INDX) TO PRINT-MONTH.

2. In Format 1, if you do not use the VARYING phrase, the index-name used for the search
operation is the first (or only) index-name appearing in the INDEXED BY phrase of
data-name-1. Any other index-names for data-name-1 remain unchanged.

3. In Format 1, if you specify the VARYING index-name-1 phrase, and if index-name-1
appears in the INDEXED BY phrase of data-name-1, that index-name is used for this
search. If this is not the case, or if you specify the VARYING data-name-2 phrase, the
first index-name given (if it exists) in the INDEXED BY phrase of data-name-1 is used
for the search. In addition, the following operations occur:

-s

'

8-56 First Edition

77?e PROCEDURE DIVISION

• If you use the VARYING index-name-1 phrase, and if index-name-1 appears in the
INDEXED BY phrase of another table entry, index-name-1 is incremented
simultaneously by the same amount as the index-name associated with data-name-1
is incremented.

• If you specify the VARYING data-name-2 phrase, and data-name-2 is an index data
item, then data-name-2 is incremented simultaneously by the same amount as the
index-name associated with data-name-1 is incremented. If data-name-2 is not an
index data item, data-name-2 is incremented by the value 1 at the same time as the
index-name associated with data-name-1 is incremented.

4. In a Format 2 SEARCH statement, the results of the SEARCH ALL operation are
predictable only when
• The data in the table is ordered in the same manner as described in the ASCENDING/

DESCENDING KEY clause associated with the description of data-name-1.
• The contents of the key(s) referenced in the WHEN clause are sufficient to identify a

unique table element.
5. When you use a Format 2 SEARCH ALL, the initial setting of the index-name for data-

name-1 is ignored and its setting is varied during the search operation. However, at no
time is the index-name set to a value that exceeds the number of elements in the table, or
that is less than the value that corresponds to the first element of the table.
If any of the conditions specified in the WHEN clause cannot be satisfied for any setting of
the index within the permitted range, control passes to imperative-statement-1 of the AT
END phrase, when specified, or to the next executable sentence. In either case, the final
setting of the index is not predictable. If all the conditions can be satisfied, the index
indicates an occurrence that allows the conditions to be satisfied, and control passes to
imperative-statement-2.

6. If imperative-statement-1 or imperative-statement-2 does not terminate with a GO TO
statement, control passes to the next sentence.

7. In Format 2, COBOL85 uses as the index-name for the search operation the first (or
only) index-name that appears in the INDEXED BY clause of data-name-1. Any other
index-names for data-name-1 remain unchanged.

8. If data-name-1 is a data item subordinate to another data item containing an OCCURS
clause (providing for a two-dimensional or three-dimensional table), you must use the
INDEXED BY phrase to associate an index-name with each dimension of the table. Only
the setting of the index-name associated with data-name-1 (and data-name-2 or index-
name-1, if present) is modified by the execution of the SEARCH statement.
To search an entire two-dimensional or three-dimensional table, you must execute a
SEARCH statement several times. Prior to each execution of a SEARCH statement, you
must execute SET statements to adjust index-names to appropriate settings.

9. A flowchart of the Format 1 SEARCH operation containing two WHEN phrases is
presented in Figure 8-8.

10. You can terminate the scope of a SEARCH statement by an END-SEARCH phrase at
the same level of nesting.

11. You can terminate the scope of a SEARCH statement by a separator period for all levels
of nesting.

12. You can terminate the scope of a SEARCH statement by an ELSE or END-IF phrase
associated with a preceding IF statement.

First Edition 8-57

COBOL85 Reference Guide

C Start J

> At End*Index Setting:
Highest Permissible
Occurrence Number

imperative-
statement-1

True

< =

^ " ^ T e s t N ^
<\^ Condition-1 J>

imperative-
statement-2 -c

True

'
False

^ ^ T e s t N .<T Condition-2* ^> imperative-
statement-3*

'
False

r

Increment index-name
for data-name-1
(index-name-1
if applicable)

'

Increment
index-name-1

(for a diffe
or data

rent table)
name-2*

(— ^ E n c T * *) ^ >

'

1

* These operations are options included only when specified in the SEARCH statement.
** Each of these control transfers is to the next sentence unless the imperative-statement

ends with a GO TO statement. Q10166-1L.A-20-0

FIGURE 8-8
Format 1 SEARCH Flowchart

8-58 First Edition

The PROCEDURE DIVISION

r SEEK — Prime Extension
Specifics a disk record to be accessed.

Format
SEEK file-name RECORD

General Rules

r

r

SET

1. SEEK is treated as documentation only in COBOL85. It is included only for
compatibility with programs transported from other vendors' systems.

2. You must define the file-name with a file-description-entry in the DATA DIVISION.

Establishes reference points for table-handling operations by setting index-names associated
with table elements. Also use the SET statement to alter the status of external switches.

Format 1
(index-name-3'

„ f index-name-1 [, index-name-2] • • •\ TO J data-name-3
\data-name-l [, data-name-2] • • • J — j iinteger-1

[arith-expr-1

Format 2

fUPBY 1 [data-name-4^

rSET index-name-4 [, index-name-5] *»• < j\nwK ry f i integer-2 >
*- *' Lan*//i-£r/?r-2 J

Format 3

SET < {mnemonic-name-1} • • • TO -j ^r™ r r * * •

Syntax Rules
1. All references to index-name-1, data-name-1, and index-name-4 apply equally to i/ufex-

name-2, data-name-2, and index-name-5, respectively.
2. You must describe data-name-4 as an elementary numeric integer.
3. The data-name-1 and data-name-3 must name either index data items or elementary

integer items.

First Edition 8-59

COBOL85 Reference Guide

4. The integer-1 and integer-2 can be signed. However, integer-1 must have a positive
value, arith-expr-1 and arith-expr-2 must evaluate to positive integers.

5. Prime Extension: The use of arithmetic expressions in the SET statement is a Prime
extension.

6. You must associate mnemonic-name-1 with an external switch.

General Rules

1. index-names are related to a specific table. Define them with the INDEXED BY clause.
2. If you specify index-name-3, the value of the index before the execution of the SET

statement must not exceed the maximum number of elements in the associated table.
3. In Format 1, the following actions occur:

4. In Format 2, the index name or names following SET are incremented or decremented
by the value after UP or DOWN, respectively. Each time, the value of data-name-4 is
used as it was at the beginning of the execution of the statement.

5. Table 8-4 represents the validity of various operand combinations in the SET statement.
6. In Format 3, the status of each external switch associated with the specified mnemonic-

name-1 is modified such that the truth value resultant from evaluation of a condition-
name associated with that switch reflects the status of the phrase specified.

8-60 First Edition

The index-name-1 is sel to a value causing it to refer to the table element that
corresponds in occurrence number to the value of the name after TO. If data-name-3
is an index data item, or if index-name-3 is related to the same table as index-name-1,
no conversion takes place.
If data-name-1 is an index data item, you can set it equal to the contents of either
index-name-3 or data-name-3, where data-name-3 is also an index data item; no
conversion takes place in either case.
If data-name-1 is not an index data item, you can set it only to an occurrence number
that corresponds to the value of index-name-3. In this case, you can use neither data-
name-3 nor integer-1.
The process is repeated for index-name-2, data-name-2, and so on. Each time, the
value of index-name-3 or data-name-3 is used as it was at the beginning of the
execution of the statement.

The PROCEDURE DIVISION

TABLE 8-4
Validity of Operand Combinations in the SET Statement

Type of Receiving Item

Valid
Valid
Valid
Valid Valid*
Valid* Valid*

r

Sending Item Integer Data Item Index-name Index Data Item

Integer arith-expr
Integer literal
Integer data item
I n d e x - n a m e V a l i d
Index data item

*No conversion takes place.

SKIP — Prime Extension
Directs the compiler to place blank lines in the program listing.

Format
SKIP/*

Syntax Rule
The letter n represents the number 1, 2, or 3 written as one word with SKIP.

General Rule
The number after SKIP causes one, two, or three blank lines to be inserted in the program
listing, after the line containing SKIP.

Example
The following program contains SKIP1 in line 4 and SKIP3 in line 6 of the source.

SOURCE FILE: <MYMFD>MYDIR>COBOL85>SKIP.COBOL85
COMPILED ON: WED, JUL 27 1988 AT: 14:31 BY: COBOL85 REV. 1.0-22.0 04/18/88.09:36
Opt ions se lec ted : sk ip - l i s t i ng
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default):

64V No_Ansi_Obsolete Big_Tables Binary CALCindex No_COMP No_CORrMap
No_DeBuG No_Data_Rep_Opt No_ERRorrile ERRTty No_EX?iist No_File_Assign
Formatted_DISplay No_HEXaddress Listing- No_MAp No_OFFset OPTimize(2)
No_PRODuction No_RAnge No_SIGnalerrors Silent(0) No_SLACKbytes TIME
No_STANdard No_STATistics Stcre_Owner_Field SYNtaxmsg No_TRUNCdiags
VARYing No_XRef

1 I D E N T I F I C A T I O N D I V I S I O N .
2 P R O G R A M - I D . S I Z E C K .
3 A U T H O R . A N N E .

First Edition 8-61

COBOL85 Reference Guide

DATE-COMPILED. 880727.14:31:22

9
10
11
12
13
14
15

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME
OBJECT-COMPUTER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
DATA DIVISION.
FILE SECTION.
PROCEDURE DIVISION.

SORT
Creates a sort-file by executing input procedures or by transferring records from another file.
It sorts the records in the sort-file on a set of specified keys, and makes the sorted records
available to output procedures or to an output file.

Format

enDT ,., . f™ f ASCENDING 1 ,__-_, rj . 1SORT file-name-1 -l ON |DESCENDING| KEY {data-name-1} • • • ^ • • •

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

INPUT PROCEDURE IS procedure-name-1 \™^GU\ procedure-name-2M

USING {file-name-2} • • •

OUTPUT PROCEDURE IS procedure-name-3 -|™^UGH1 procedure-name-4

^GIVING {file-name-3} • • •

The SORT statement is discussed in Chapter 14.

START
Provides a basis for logical positioning within an indexed or relative file for subsequent
sequential or dynamic retrieval of records.

8-62 First Edition

The PROCEDURE DIVISION

Format

START file-name KEY IS <

NOT LESS THAN OR EQUAL TO ^
NOT<=
GREATER THAN OR EQUAL TO
>=
EQUAL TO

GREATER THAN
> data-name

NOT LESS THAN
NOT <

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

Chapters 10 and 11 describe the use of the START statement with indexed files and relative
files, respectively.

STOP
Terminates or delays execution of the object program.

r

r

Format

as O
Syntax Rules

1. The literal must be a numeric unsigned integer, nonnumeric literal, or any figurative
constant without the keyword ALL.

2. If a STOP RUN statement appears in a consecutive sequence of imperative statements
within a sentence, it must appear as the last statement in that sequence.

General Rules

1. STOP RUN terminates execution of a program, returning control to the operating
system.

2. If STOP RUN appears in a called program, execution halts when the statement is
encountered. Control is not returned to the calling program.

3. If you specify STOP literal, literal is displayed on the terminal, and execution is
suspended. Execution resumes at the next executable statement in sequence after you

First Edition 8-63

COBOL85 Reference Guide

STRING

press the carriage return. Presumably, you perform a function suggested by the contents
of literal before resuming program execution.

4. During the execution of a STOP RUN statement, an implicit CLOSE statement is
executed for each open file. Any USE procedure associated with any of the files is not
executed.

Concatenates the partial or complete contents of two or more data items.

Format

STRING |^-fj^-n P data-name-2-]
{^literal-1 J [_> lderal-2 J {data-name-3'

literal-3
SIZE

{data-name-4\ ["", dtliteral-4 J _, H
data-name-5
literal-5 i...

{data-name-6~
literal-6
SIZE

INTO data-name-7 [WITH POINTER data-name-8]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING]

Syntax Rules
1. Each literal can be any figurative constant (without the optional word ALL).
2. You must describe all literals as nonnumeric literals. You must describe all data-names,

except data-name-8, implicitly or explicitly as USAGE IS DISPLAY.
3. The operand after INTO, data-name-7, must represent an elementary alphanumeric data

item without editing symbols or the JUSTIFIED clause.
4. The POINTER operand, data-name-8, must represent an elementary numeric integer data

item big enough to contain a value equal to the size of data-name-7 + 1. You cannot use
the symbol P in the PICTURE character-string of data-name-8.

5. Where data-name-1, data-name-2, or data-name-3 is an elementary numeric data item,
you must describe it as an integer without the symbol P in its PICTURE character-
string.

6. Operands of STRING have a maximum length of 32,766 bytes.

8-64 First Edition

The PROCEDURE DIVISION

General Rules

1. All references to data-name-1 through data-name-3 and literal-1 through literal-3 apply
equally to data-name-4 through data-name-6 and literal-4 through literal-6, respectively.

2. The items referred to by data-name-1, literal-1, data-name-2, and literal-2 are the
sending items, data-name-7 represents the receiving item.

3. The operands of DELIMITED (literal-3, data-name-3) indicate the character(s)
delimiting the move. If the SIZE phrase is used, the complete sending item is moved.
When a figurative constant is used as the delimiter, the constant stands for a single-
character nonnumeric literal.

4. When you specify a figurative constant as literal-1, literal-2, or literal-3, the constant
refers to an implicit one-character data item whose usage is DISPLAY.

5. When the STRING statement is executed, the transfer of data is governed by the
following rules:
• Characters from the sending items are transferred to data-name-7 in accordance with

the rules for alphanumeric to alphanumeric moves, except that no space-filling is
provided.

• If you specify the DELIMITED phrase without the SIZE phrase, the contents of the
sending items are transferred to the receiving data item. This occurs in the sequence
specified in the STRING statement, beginning with the leftmost character and
continuing from left to right until the end of the data item is reached, or until the
character(s) specified by literal-3 or by the contents of data-name-3 are encountered.
The character(s) specified by literal-3 or by the data item referenced by data-name-3
are not transferred.

• If you specify the DELIMITED phrase with the SIZE phrase, the entire contents of
literal-1, literal-2, or data-name-1, data-name-2, are transferred. The transfer
proceeds in the sequence specified in the STRING statement to data-name-7, until all
data is transferred or the end of the data item referenced by data-name-7 is reached.

6. If you specify the POINTER phrase, you must set the initial value of data-name-8. The
initial value must not be less than 1.

7. If you do not specify the POINTER phrase, characters are transferred to the receiving
item as if you specified data-name-8 with an initial value of 1.

8. When COBOL85 transfers characters to the receiving item (data-name-7), the transfer
occurs as if characters are moved, one at a time, from the sending item to the character
position of data-name-7 designated by the value of data-name-8. data-name-8 is
increased by one prior to the move of the next character. This is the only way the value
of data-name-8 is changed during execution of the STRING statement.

9. When the STRING statement is executed, only the portion of data-name-7 that is
referenced during the execution of the STRING statement is changed. All other portions
of data-name-7 contain data that was present before this execution of the STRING
statement.

10. Data transfer to data-name-7 terminates when the value in data-name-8 is either less
than 1, or exceeds the number of character positions in data-name-7. Such termination
can occur at any point at or after initialization of the STRING statement. If termination
occurs as a result of such a condition, and if you specify the ON OVERFLOW phrase,
control passes to imperative-statement-1.

First Edition 8-65

COBOL85 Reference Guide

11. If an overflow condition is not encountered, and you specify the NOT ON OVERFLOW
phrase, the ON OVERFLOW phrase, if specified, is ignored, and control is transferred
to imperative-statement-2. Execution then continues according to the rules in Chapter 4.

12. The END-STRING clause delimits the scope of the STRING statement. See the section
Scope Terminators at the beginning of this chapter for more information.

Example
The following program concatenates two strings to form a single string.

OK, SLIST STRING.LIST
SOURCE FILE: <MYMFD>MYDIR>COBOL85>STRING.COBOL85
COMPILED ON: WED, JUL 27 1988 AT: 14:46 BY: C0B0L85 REV. 1.0-22.0
Options selected: STRING -L
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default):

64V No_Ansi_Obsolete Big_Tables Binary CALCindex No_COMP No_CORrMap
No_DeBuG No_Data_Rep_Opt No_ERRorFile ERRTty No_EXPlist No_File_Assign
Formatted_DISplay No_HEXaddress Listing* No_MAp No_OFFset OPTimize(2)
No_PRODuction No_RAnge No_SIGnalerrors Silent(0) No_SLACKbytes TIME
No_STANdard No_STATistics Store_Owner_Field SYNtaxmsg No_TRUNCdiags
VARYing No_XRef

1 I D D I V I S I O N .
2 P R O G R A M - I D . U S T R I N G .
3 E N V I R O N M E N T D I V I S I O N .
4 C O N F I G U R AT I O N S E C T I O N .
5 SOURCE-COMPUTER. PRIME-850 .
6 O B J E C T- C O M P U T E R . P R I M E - 8 5 0 .
7 D A T A D I V I S I O N .
8 WORKING-STORAGE SECTION.
9 7 7 U S E R - N U M B E R - W S P I C X (l) .

1 0 7 7 U S E R - P R E F I X - W S P I C X (7) .
1 1 7 7 U S E R - N A M E - W S P I C X (8) .
12
1 3 P R O C E D U R E D I V I S I O N .
1 4 0 1 0 - S T R I N G .
15 D ISPLAY 'PREF IX : ' ACCEPT USER-PREF IX -WS.
16 DISPLAY 'RUN NO: ' ACCEPT USER-NUMBER-WS.
17 STRING USER-PREFIX-WS, USER-NUMBER-WS DELIMITED
1 8 B Y ' ' I N T O U S E R - N A M E - W S
19 ON OVERFLOW DISPLAY 'FILENAME MAY ONLY BE 8
20 - 'CHARACTERS LONG PLEASE START AGAIN ' .
21 DISPLAY 'USER-NAME WILL BE ' USER-NAME-WS.
2 2 S T O P R U N .

8-66 First Edition

The PROCEDURE DIVISION

When you execute this program (supposing a runfile named STRING.RUN), screen dialoj
approximates the following example:

OK, RESUME STRING
PREFIX:
EVELYN
RUN NO:
1
USER-NAME WILL BE EVELYN1
OK,

SUBTRACT
Subtracts one or more numeric data items from a specified item and stores the difference.

Format 1
(data-name-1

SUBTRACT \ literal-1
\ data-name-2"
, literal-2

L arith-expr-1 J _, arith-expr-2 _

FRCM data-name-3 [ROUNDED] [, data-name-n [ROUNDED]]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 2
f data-name-1'] [~, data-name-2

SUBTRACT J literal-1 V , literal-2
[arith-expr-1 J _, arith-expr-2

f data-name-3~]
FROM <l literal-3 I GIVING data-name-6 [ROUNDED] [, data-name-7 [ROUNDED]]

l^ arith-expr-3 J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

First Edition 8-67

COBOL85 Reference Guide

Format 3

nmTD.«- fCORRESPONDING"1 . , ,SUBTRACT - j r ^ data-name-1

FROM data-name-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Syntax Rules
1. Each data-name must refer to a numeric elementary item, except that data-name-5, data-

name-6, and so on (following GIVING) can be elementary numeric-edited items.
2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. If all receiving data items were

superimposed and aligned by their decimal points, their composite must not exceed 18
decimal digits in length. This rule is ignored if you use the GIVING phrase.

4. In Format 3, both data-name-1 and data-name-2 must be group items.
5. Prime Extension: The use of arithmetic expressions in SUBTRACT statements is a

Prime extension.

General Rules

1. The SUBTRACT statement is governed by the rules for the GIVING,
CORRESPONDING, ROUNDED, ON SIZE ERROR, and NOT ON SIZE ERROR
phrases described at the beginning of this chapter, by the rules for arithmetic statements
and algebraic signs in Chapter 4, and by the rules listed in the section Arithmetic
Statements in the PROCEDURE DIVISION, also at the beginning of this chapter.

2. In Format 1, the effect of the SUBTRACT statement is to add the values of all the
operands that precede FROM, and then subtract that sum from the value of each of the
operands following FROM. The result is stored in each of the operands following
FROM.

3. In Format 2, all operands preceding FROM are added, the resulting sum is subtracted
from data-name-3, arith-expr-3', or literal-3, and the result is stored in each of the
operands following GIVING. See the discussion of composite of operands in the section
Arithmetic Statements in the PROCEDURE DIVISION, at the beginning of this chapter.

4. In Format 3, elementary items subordinate to data-name-1 are subtracted from and
stored in the matching elementary items subordinate to data-name-2.

5. The SIZE ERROR phrase is executed if the result is too large for its field.
6. The END-SUBTRACT clause delimits the scope of the SUBTRACT statement. For

more information, see the section Scope Terminators at the beginning of this chapter.

* >

■

8-68 First Edition

The PROCEDURE DIVISION

UNSTRING

r
r

Separates contiguous data in a sending field and places the separated data into multiple
receiving fields.

Format
UNSTRING data-name-1

gagas«- tALL] {rrr2} [•« ̂ en] • • •]
INTO data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

[, data-name-7 [, DELIMITER IN data-name-8] [, COUNT IN data-name-9]] • • •

[WITH POINTER data-name-10] [TALLYING IN data-name-11]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-UNSTRING]

Syntax Rules
1. Each //r_ra/ must be a nonnumeric literal. In addition, each literal can be any figurative

constant without the optional word ALL. (The ALL phrase of the UNSTRING clause is
not the figurative constant ALL.)

2. You must describe the items represented by data-name-1, data-name-2, data-name-3,
data-name-5, and data-name-8, implicitly or explicitly, as alphanumeric.

3. You can describe the items represented by data-name-4 and data-name-7 as either
alphabetic (except that you cannot use the symbol B in their PICTURE character-
strings), alphanumeric, or numeric (except that you cannot use the symbol P in their
PICTURE character-strings). You must describe them with USAGE IS DISPLAY.

4. You must describe the items represented by data-name-6, data-name-9, data-name-10,
and data-name-11 as elementary numeric integer data items (except that you cannot use
the symbol P in their PICTURE character-strings).

5. No data-name can name a level-88 entry.
6. You can specify the DELIMITER IN phrase and the COUNT IN phrase only if you

specify the DELIMITED BY phrase.
7. Operands of UNSTRING have a maximum length of 32,766 bytes.

First Edition 8-69

COBOL85 Reference Guide

General Rules

1. All references to data-name-2, literal-1, data-name-4, data-name-5, and data-name-6
apply equally to data-name-3, literal-2, data-name-7, data-name-8, and data-name-9,
respectively.

2. data-name-1 represents the sending area.
3. data-name-4 represents the receiving area, data-name-5 represents the receiving area

for delimiters.
4. literal-1 or the data item referenced by data-name-2 specifies a delimiter.
5. data-name-6 represents the count of the number of characters within data-name-1

isolated by the delimiters for the move to data-name-4. This value does not include a
count of the delimiter characters).

6. The data item referenced by data-name-10 contains a value that indicates a relative
character position within the area defined by data-name-1.

1. The data item referenced by data-name-11 is a counter that records the number of data
items acted upon during the execution of an UNSTRING statement.

8. When you use a figurative constant as the delimiter, it stands for a single-character
nonnumeric literal.
When you specify the ALL phrase, COBOL85 treats two or more contiguous occurrences
of literal-1 (figurative constant or not), or of the contents of data-name-2, as only one
occurrence. This occurrence is moved to the receiving data item (data-name-4) according
to the mles for the DELIMITER IN phrase in General Rule 13 below.

9. When an examination encounters two contiguous delimiters, the current receiving area is
either space-filled or zero-filled, according to the description of the receiving area.

10. The literal-1, or the contents of the data item referenced by data-name-2, can contain
any character in the computer's character set.

11. Each literal-1 or data-name-2 represents one delimiter. When a delimiter contains two or
more characters, all the characters must be present in contiguous positions of the sending
item and in the order given to be recognized as a delimiter.

12. When you specify two or more delimiters in the DELIMITED BY phrase, an OR
condition exists between them. Each delimiter is compared to the sending field. If a
match occurs, the character(s) in the sending field is a single delimiter. No characters) in
the sending field can be part of more than one delimiter.
Each delimiter is applied to the sending field in the sequence specified in the
UNSTRING statement.

13. When the UNSTRING statement is initiated, the current receiving area is the data item
referenced by data-name-4. Data is transferred from data-name-1 to data-name-4
according to the following mles:
• If you specify the POINTER phrase, the string of characters referenced by data-

name-1 is examined, beginning with the relative character position indicated by the
contents of data-name-10. If you do not specify the POINTER phrase, the string of
characters is examined beginning with the leftmost character position.

• If you specify the DELIMITED BY phrase, the examination proceeds, left to right,
until a delimiter specified by either literal-1 or data-name-2 is encountered. (See
General Rule 11.) If you do not specify the DELIMITED BY phrase, the number of

" >

8-70 First Edition

T/?_> PROCEDURE DIVISION

characters examined is equal to the size of the receiving area. However, if the sign of
the receiving area is defined as occupying a separate character position, the number
of characters examined is one less than the size of the current receiving area.
If the end of data-name-1 is encountered before the delimiting condition is met, the
examination terminates with the last character examined.

• The characters thus examined (excluding any delimiting characters), are treated as an
elementary alphanumeric data item, and are moved into the current receiving area
according to the mles for the MOVE statement.

• If you specify the DELIMITER IN phrase, the delimiting characters) is treated as an
elementary alphanumeric data item and is moved into data-name-5 according to the
rules for the MOVE statement. If the delimiting condition is the end of data-name-1,
then data-name-5 is space-filled.

• If you specify the COUNT IN phrase, a value equal to the number of characters thus
examined (excluding the delimiter charactcr(s), if any) is moved into data-name-6
according to the mles for an elementary move.

• If you specify the DELIMITED BY phrase, the string of characters is further
examined, beginning with the first character to the right of the delimiter. If you do
not specify the DELIMITED BY phrase, the string of characters is further examined,
beginning with the character to the right of the last character transferred.

• After data is transferred to data-name-4, the current receiving area is data-name-7.
The behavior described in the preceding four paragraphs is repeated until either all
the characters are exhausted in data-name-1, or there are no more receiving areas.

14. You must initialize the contents of the data items associated with the POINTER phrase
or the TALLYING phrase.

15. The contents of data-name-10 are incremented by one for each character examined in
data-name-1. When the execution of an UNSTRING statement with a POINTER phrase
is complete, data-name-10 contains a value equal to the initial value, plus the number of
characters examined in data-name-1.

16. When the execution of an UNSTRING statement with a TALLYING phrase is complete,
the contents of data-name-11 is a value equal to its initial value, plus the number of data
receiving items acted upon.

17. Either of the following situations causes an overflow condition:

• An UNSTRING is initiated, and the value of data-name-10 is less than 1 or greater
than the value of data-name-1.

• During execution of an UNSTRING statement, all data receiving areas are acted
upon, and data-name-1 contains characters that were not examined.

18. When an overflow condition exists, the UNSTRING operation is terminated. If you
specify an ON OVERFLOW phrase, imperative-statement-1 is executed.

19. If an overflow condition does not exist, and you specified the NOT ON OVERFLOW
phrase, control is transferred to imperative-statement-2. If you specified the ON
OVERFLOW phrase, it is ignored. Execution then continues according to the mles listed
in Chapter 4.

20. The END-UNSTRING clause delimits the scope of the UNSTRING statement. See the
section Scope Terminators at the beginning of this chapter for more information.

First Edition 8-71

COBOL85 Reference Guide

21. Subscript evaluation for the data-names proceeds as follows:

• Any subscripting associated with data-name-1, data-name-10, or data-name-11 is
evaluated only once, immediately before any data is transferred as the result of
executing the UNSTRING statement.

• Any subscripting associated with data-name-2 through data-name-6 is evaluated
immediately before the transfer of data into the respective data item.

Note
Prime Restriction: You can specify no more than five delimiters within an UNSTRING
statement.

Example
ID DIVISION.
PROGRAM-ID. INPUT1.
AUTHOR. GJK.
REMARKS. THIS IS A SUBPROGRAM THAT ACCEPTS THREE FIELDS. THE FIRST

FIELD (CALL-INPUT) CONTAINS THE NUMERIC DATA (LEFT-JUSTIFIED) THAT
WAS ACCEPTED FROM THE KEYBOARD. THE DATA WILL BE RETURNED TO THE
CALLING PROGRAM IN THE SECOND FIELD (CALL-RECEIVE), RIGHT-
JUSTIFIED IF THE FIRST FIELD IS IN CORRECT FORMAT. OTHERWISE
AN ERROR CODE IS RETURNED IN THE THIRD FIELD (CALL-ERROR-CODE).

DATA DIVISION.
WORKING-STORAGE SECTION.
01 AMOUNT-BEFORE-UNSTRING P IC X(20) .
01 UNSTRING-FIELDS.

0 5 U N - A M O U N T - 1 P I C 9 (1 6) .
0 5 U N - A M O U N T - 2 P I C X (2) .

01 AMOUNT-ALIGNED REDEFINES UNSTRING-FIELDS PIC 9(16)V99.
0 1 A M O U N T - T E S T P I C X (2 0) .
0 1 I N S - T A L L Y P I C 9 9 .

*
LINKAGE SECTION.
0 1 C A L L - I N P U T P I C X (2 0) .
0 1 C A L L - R E C E I V E P I C 9 (1 6) V 9 9 .
0 1 C A L L - E R R O R - C O D E P I C 9 .

*
PROCEDURE DIVISION USING CALL-INPUT, CALL-RECEIVE, CALL-ERROR-CODE.
050-MAIN.

MOVE ZEROS TO UN-AMOUNT-1, INS-TALLY, CALL-ERROR-CODE.
MOVE SPACES TO UN-AMOUNT-2.
PERFORM 100-EDIT-AMOUNT.
IF CALL-ERROR-CODE NOT EQUAL 0 NEXT SENTENCE

ELSE PERFORM 200-PREPARE-FOR-UNSTRING,
PERFORM 250-ALIGN-AMOUNT-WITH-UNSTRING,
MOVE AMOUNT-ALIGNED TO CALL-RECEIVE.

EXIT PROGRAM.
100-EDIT-AMOUNT.

IF CALL-INPUT EQUAL SPACES
MOVE 1 TO CALL-ERROR-CODE

ELSE PERFORM 150-IS-AMOUNT-NUMERIC.

8-72 First Edition

USE

r

-

-

The PROCEDURE DIVISION

150-IS-AMOUNT-NUMERIC.
MOVE CALL-INPUT TO AMOUNT-TEST.
INSPECT AMOUNT-TEST TALLYING INS-TALLY FOR ALL '.'.
IF INS-TALLY EQUAL 0 MOVE 2 TO CALL-ERROR-CODE

ELSE INSPECT AMOUNT-TEST REPLACING ALL SPACES BY ZEROES,
INSPECT AMOUNT-TEST REPLACING FIRST '.' BY ZERO
IF AMOUNT-TEST IS NUMERIC NEXT SENTENCE,

ELSE MOVE 1 TO CALL-ERROR-CODE.
200-PREPARE-FOR-UNSTRING.

INSPECT CALL-INPUT REPLACING ALL SPACES BY ZEROES.
MOVE CALL-INPUT TO AMOUNT-BEFORE-UNSTRING.

2 50-ALIGN-AMOUNT-WITH-UNSTRING.
UNSTRING AMOUNT-BEFORE-UNSTRING DELIMITED BY '.'

INTO UN-AMOUNT-1, UN-AMOUNT-2.

Specifies procedures for input-output error handling.

Format

USE AFTER STANDARD -fl£il?- l̂" PROCEDURE ON <{ OUTPUT1 E R R O R J] —
EXTEND

ffile-name-1 [, file-name-2]
INPUT

Syntax Rules
1. A USE statement, when present, must immediately follow a section header in the

declaratives section, separated from it by a period and a space. The remainder of the section
must consist of zero, one, or more paragraphs that define the procedures to be used.

2. The USE statement itself is never executed; rather, it defines the conditions for the
execution of the following paragraphs.

3. The same file-name can appear in more than one USE statement, in a different specific
arrangement of the format. Appearance of a file-name in a USE statement must not
cause the simultaneous request for execution of more than one USE procedure.

4. The words EXCEPTION and ERROR are interchangeable.
5. The files implicitly or explicitly referenced in a USE statement need not all have the

same organization or access.

General Rules

1. The paragraphs introduced by USE are executed after the standard 1-0 recovery for the
following conditions:

• After the end-of-file condition arises on a statement lacking the AT END clause

First Edition 8-73

COBOL85 Reference Guide

WRITE

8-74 First Edition

* >

After the invalid key condition arises on a statement lacking the INVALID KEY
clause
After a permanent error condition or logic error condition arises

• After a recoverable error condition arises that is not an invalid key or end-of-file
condition

See Chapter 4 for a full discussion of 1-0 status codes and runtime error recovery.
2. If more than one USE procedure applies to a file because of an explicit reference to the

file-name in one USE statement and an implicit reference to the OPEN mode in another
USE statement, the USE procedure explicitly referencing the file-name is invoked when
and if required.

3. For recoverable errors, after a USE procedure is executed, control returns to the
statement following the 1-0 statement whose execution resulted in invoking the USE
procedure. For fatal errors, after a USE procedure is executed, the program terminates.

4. A USE procedure must not contain any reference to a nondeclarative procedure.
Conversely, the nondeclarative portion of a USE procedure must not contain any
reference to procedure-names that appear in the declarative portion, except that
PERFORM statements can refer to a USE statement or to the procedures associated with
it.

5. Because tape files can only be opened in INPUT or OUTPUT mode, USE procedures for
1-0 or EXTEND are ignored for tape files.

6. During the execution of a USE procedure for a fatal error, no input-output operations on
the file in error are allowed, except for a CLOSE statement.
During the execution of a USE procedure for any type of error, no statement can be
executed that would cause the execution of a USE procedure that had previously been
invoked and had not yet returned control to the invoking routine.
See Chapter 4 for a full discussion of 1-0 status codes and error recovery.

Example
The sample program at the end of this chapter contains an example of USE in declarative
sections for disk and tape files.

Releases a logical record for an output or 1-0 file. Use it also for vertical positioning of lines
within a logical page.

The PROCEDURE DIVISION

Format 1
WRITE record-name [FROM data-name-1]

fAFTER 1 f f data-name-2~] ["LINE
{BEFORE J ADVANCING ^ \l/«^r J |_LINES_

PAGE

[END-WRITE]

Format 2
WRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

Chapters 9, 10, 11, and 12 describe the use of the WRITE statement with sequential files,
indexed files, relative files, and tape files, respectively.

"

r
r

PROCEDURE DIVISION Example
This example, with the examples at the end of Chapters 5, 6, and 7, forms one program.

PROCEDURE DIVISION.

DECLARATIVES.
INPUT-ERROR SECTION. USE AFTER ERROR PROCEDURE ON DISK-FILE.
FIRST-PARAGRAPH.

DISPLAY '**** 1-0 ERROR ON ENTRY: ***', FILE STATUS.
DISPLAY ENTRY-DETAIL.
CLOSE DISK-FILE, PRINT-FILE.
STOP RUN.

TAPE-ERROR SECTION. USE AFTER ERROR PROCEDURE ON TAPE-FILE.
SECOND-PARAGRAPH.
END DECLARATIVES.

001-BEGIN.
READY TRACE.
OPEN INPUT DISK-FILE, OUTPUT PRINT-FILE.
PERFORM 010-GET-JOBINFO.
PERFORM 02 0-NEW-DETAIL-PAGE.
PERFORM 030-PROCESS-DETAIL.
PERFORM 070-TOTALS.
PERFORM 0 80-BALANCE-TOTALS.

First Edition 8-75

COBOL85 Reference Guide

PERFORM 0 90-PROCESS-TAPE.
CLOSE DISK-FILE, PRINT-FILE.
DISPLAY ' END OF RUN'.
STOP RUN.

010-GET-JOBINFO.
DISPLAY 'ENTER MONTH(ALPHA)'. ACCEPT VARIABLE-MONTH.
DISPLAY 'ENTER JOB CODE'. ACCEPT JOB-CODE.
IF NOT CORRECT-CODE DISPLAY 'WRONG CODE',

CLOSE DISK-FILE, PRINT-FILE, STOP RUN.
*

020-NEW-DETAIL-PAGE.
MOVE ' DETAIL LIST ' TO VARIABLE-HEADING.
PERFORM 150-NEW-PAGE THRU 150-NEW-PAGE-EXIT.
MOVE SPACES TO PRINT-LINE.
M O V E ' D A T E V E N D O R C H E C K
' A C C O U N T A M O U N T ' TO P R I N T- L I N E .
WRITE PRINT-LINE AFTER ADVANCING VARIABLE LINES.
ADD 4 TO LINECOUNT.
EJECT

030-PROCESS-DETAIL.
READ DISK-FILE AT END MOVE ' Y' TO NO-MORE-RECORDS,

DISPLAY 'INPUT FILE WAS EMPTY',
CLOSE PRINT-FILE, DISK-FILE, STOP RUN.

PERFORM 035-READ-AND-PRINT UNTIL NO-MORE-RECORDS = ' Y' .
EXIT.

035-READ-AND-PRINT.
MOVE 0 TO ERR-CODE.
PERFORM 040-EDIT.
IF ERR-CODE NOT = 0 PERFORM 0 60-REJECTS,
ELSE PERFORM 050-DEPT-TOTALS.
MOVE 1 TO VARIABLE.
MOVE CORRESPONDING ENTRY-DETAIL TO PRINT-DETAIL.
MOVE ENTRY-ACCT-NO TO PRINT-ACCT-NO.
MOVE ENTRY-AMOUNT TO PRINT-AMOUNT.
WRITE PRINT-LINE FROM PRINT-DETAIL AFTER ADVANCING

1 LINE.
ADD 1 TO LINECOUNT.
IF LINECOUNT > 50 PERFORM 020-NEW-DETAIL-PAGE.

* *
* R E A D A L L S U B S E Q U E N T E N T R I E S . *
* *

READ DISK-FILE AT END MOVE 'Y' TO NO-MORE-RECORDS.
EXIT.

*
040-EDIT.

* *
* ONLY ONE ERROR IS FLAGGED FOR EACH REJECT *
* *

MOVE 0 TO ERR-CODE.
IF ENTRY-ACCT-NO NOT NUMERIC MOVE 1 TO ERR-CODE.

8-76 First Edition

77>e PROCEDURE DIVISION

IF ENTRY-ACCT-NO LESS THAN 100 OR GREATER THAN 4 49,
MOVE 2 TO ERR-CODE.

IF ENTRY-AMOUNT NOT NUMERIC MOVE 3 TO ERR-CODE.
IF ENTRY-MONTH OF ENTRY-DETAIL NOT NUMERIC MOVE 4 TO

ERR-CODE.
IF ENTRY-CHECK-NO OF ENTRY-DETAIL NOT NUMERIC,

MOVE 7 TO ERR-CODE.
*

050-DEPT-TOTALS.
* *
* M A K E C R O S S - T O T A L A S C H E C K , *
* F IND HOME-ACCOUNT FOR EACH ACCOUNT NUMBER. *
* ADD ENTRY-AMOUNT TO HOME DEPARTMENT TOTAL . *
* *

ADD ENTRY-AMOUNT TO CROSS-TOTAL.
IF ENTRY-ACCT-NO LESS THAN 200, ADD ENTRY-AMOUNT TO TOTALl,
ELSE IF ENTRY-ACCT-NO LESS THAN 300 AND ENTRY-ACCT-NO >

19 9, ADD ENTRY-AMOUNT TO TOTAL2,
ELSE IF ENTRY-ACCT-NO LESS THAN 420 AND ENTRY-ACCT-NO

> 300, ADD ENTRY-AMOUNT TO TOTAL3,
ELSE IF ENTRY-ACCT-NO LESS THAN 430 AND

ENTRY-ACCT-NO > 419, ADD ENTRY-AMOUNT TO
TOTAL4,

ELSE IF ENTRY-ACCT-NO LESS THAN 4 40 AND
ENTRY-ACCT-NO > 42 9, ADD
ENTRY-AMOUNT TO TOTAL5,

ELSE IF ENTRY-ACCT-NO > 439, ADD
ENTRY-AMOUNT TO TOTAL6.

*
0 60-REJECTS.

* *
* M A K E C R O S S - T O T A L F O R R E J E C T S . *
* *

IF ENTRY-AMOUNT NUMERIC, ADD ENTRY-AMOUNT TO REJECT-TOTAL.
MOVE ' ** ERROR FOLLOWS **' TO MESSAGE.
WRITE ERROR-LINE.
EJECT

070-TOTALS.
MOVE 'TOTALS BY ACCOUNT NUMBER' TO VARIABLE-HEADING.
PERFORM 150-NEW-PAGE THRU 150-NEW-PAGE-EXIT.
M O V E ' A C C O U N T T O T A L D I S B U R S E M E N T
' ' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING VARIABLE LINES.

* *
* P R I N T T O T A L S F O R E A C H H O M E A C C O U N T *
* *

MOVE '100' TO HOME-NUMBER.
MOVE TOTALl TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '200' TO HOME-NUMBER.
MOVE TOTAL2 TO HOME-TOTAL.

First Edition 8-77

COBOL85 Reference Guide

WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1 .
MOVE '410' TO HOME-NUMBER.
MOVE TOTAL3 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '420' TO HOME-NUMBER.
MOVE TOTAL4 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '430' TO HOME-NUMBER.
MOVE TOTAL5 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE '440' TO HOME-NUMBER.
MOVE TOTAL6 TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
MOVE 'REJ' TO HOME-NUMBER.
MOVE REJECT-TOTAL TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 1.
ADD TOTALl, TOTAL2, TOTAL3, TOTAL4, TOTAL5, TOTAL6,

REJECT-TOTAL GIVING FINAL-TOTAL.
MOVE 'FINAL TOTAL ' TO HOME-NUMBER.
MOVE FINAL-TOTAL TO HOME-TOTAL.
WRITE PRINT-LINE FROM HOME-ACCT-LINE AFTER ADVANCING 2.

080-BALANCE-TOTALS.
MOVE ' BALANCE RUN ' TO VARIABLE-HEADING.
PERFORM 150-NEW-PAGE THRU 150-NEW-PAGE-EXIT.

* *
* GOOD ITEMS AND REJECTS ARE ADDED FOR GRAND-TOTAL, WHICH *
* COMPARED WITH THE FINAL TOTAL (OBTAINED BY ADDING ACCOUNT *
* T O T A L S A N D R E J E C T T O T A L) . *
* *

M O V E ' G O O D I T E M S R E J E C T T O T A L
' GRAND-TOTAL ' TO PRINT-LINE.

WRITE PRINT-LINE AFTER ADVANCING VARIABLE LINES.
ADD CROSS-TOTAL, REJECT-TOTAL GIVING GRAND-TOTAL.
MOVE GRAND-TOTAL TO FIELD-DIFF.
MOVE REJECT-TOTAL TO FIELD-REJECT.
MOVE CROSS-TOTAL TO FIELD-TOTAL.
WRITE PRINT-LINE FROM BALANCE-LINE AFTER ADVANCING 1.
IF GRAND-TOTAL NOT EQUAL FINAL-TOTAL,

MOVE '*** TOTALS DO NOT BALANCE ***' TO ERROR-LINE,
WRITE ERROR-LINE AFTER ADVANCING 2 LINES.

0 90-PROCESS-TAPE.
DISPLAY 'IS TAPE OUTPUT DESIRED—ENTER YES OR NO '.
ACCEPT TAPE-CHOICE.
IF TAPE-CHOICE = 'yes' OR

TAPE-CHOICE = 'YES' PERFORM 095-WRITE-TAPE,
ELSE DISPLAY 'NO TAPE'.

*
0 95-WRITE-TAPE.

OPEN OUTPUT TAPE-FILE.
MOVE 1 TO VARIABLE.
MOVE VARIABLE-MONTH TO TAPE-MONTH.

~ ^

8-78 First Edition

77)© PROCEDURE DIVISION

WRITE TAPE-LINE FROM TAPE-HEADER.
ACCEPT JOB-DATE FROM DATE.
MOVE JOB-DATE TO SAVE-DATE-TAPE.
MOVE '100' TO SAVE-ACCT-TAPE.
MOVE TOTALl TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '200' TO SAVE-TOTAL-TAPE.
MOVE TOTAL2 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '410' TO SAVE-ACCT-TAPE.
MOVE TOTAL3 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '420' TO SAVE-ACCT-TAPE.
MOVE TOTAL4 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '430' TO SAVE-ACCT-TAPE.
MOVE TOTAL5 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '440' TO SAVE-ACCT-TAPE.
MOVE TOTAL6 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
CLOSE TAPE-FILE.
PERFORM 0 95-VERIFY-TAPE.

0 95-VERIFY-TAPE.
DISPLAY 'FIRST TAPE RECORD - VERIFICATION ONLY'.
OPEN INPUT TAPE-FILE.
READ TAPE-FILE INTO TAPE-HEADER.
READ TAPE-FILE.
DISPLAY TAPE-LINE.
CLOSE TAPE-FILE.
EXIT.

tr

150-NEW-PAGE.
MOVE PAGECOUNT TO HEADING-PAGE.
MOVE 2 TO VARIABLE.
WRITE PRINT-LINE FROM HEADING1 AFTER ADVANCING PAGE.
WRITE PRINT-LINE FROM HEADING2 AFTER ADVANCING

VARIABLE LINES.
WRITE PRINT-LINE FROM HEADING3 AFTER ADVANCING

VARIABLE LINES.
ADD 1 TO PAGECOUNT.
MOVE SPACES TO PRINT-LINE.
MOVE 8 TO LINECOUNT.

150-NEW-PAGE-EXIT.

First Edition 8-79

COBOL85 Reference Guide

The following dialog compiles, links, and executes this program, stored as
OLDCASH.COBOL85. (The example at the end of Chapter 12 executes the tape sections.)

OK, C0B0L85 OLDCASH -LISTING
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: OLDCASH.COBOL85]

OK, BIND -LOAD OLDCASH -LI C0B0L85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]

BIND COMPLETE

OK, RESUME OLDCASH
ENTER MONTH(ALPHA)
NOVEMBER, 1987
ENTER JOB CODE
25

TAPE OUTPUT DESIRED—ENTER YES OR No
NO
NO TAPE

END OF RUN
OK,

A sample input file (DISBURSE) is

408080185
409080185
410080285
411080285
412080385
413090385
C82080785
4500B0785
580080785
680080785

ASHTABULA HDWE
CAIRO CHEMICAL
ST.BOTOLPHSTOWN
DOVER MUTUAL
PARIS AUTO
ROME BOATING
ODESSA SERVICES
ANTIOCH SERVALL
BETHLEHEM TAXI
ATHENS LUMBER

4300035476
4360002746

SUPP420.0005108
4100034166
4100015000
4150017982
4100004670
4300002580
RR00009840
18500036BB

A sample output file (PRINT-FILE) is

MONTHLY CASH DISBURSEMENTS JOURNAL

FOR NOVEMBER, 1987

DETAIL LIST

PAGE 1

DATE VENDOR CHECK ACCOUNT AMOUNT
080185 ASHTABULA HDWE 408 430 354.76
080185 CAIRO CHEMICAL 409 436 27.46
080285 ST.BOTOLPHSTOWN SUPP 410 420 51.08
080285 DOVER MUTUAL 411 410 341.66
080385 PARIS AUTO 412 410 150.00
090385 ROME BOATING 413 415 179.82
** ERROR FOLLOWS **
080785 ODESSA SERVICES C82 410 46.70

8-80 First Edition

** ERROR FOLLOWS **
0B0785 ANTIOCH SERVALL
** ERROR FOLLOWS **
080785 BETHLEHEM TAXI
** ERROR FOLLOWS **
08 0785 ATHENS LUMBER

450

580

580

The PROCEDURE DIVISION

4 3 0 2 5 . 8 0

R R 0 9 8 . 4 0

1 8 5 3 6 . B B

r

MONTHLY CASH DISBURSEMENTS JOURNAL

FOR NOVEMBER, 1987

TOTALS BY ACCOUNT NUMBER

ACCOUNT
100
200
410
420
430
440
REJ
FINAL TOTAL

TOTAL DISBURSEMENT
.00
.00

671.48
51.08

382.22
.00

170.90
1275.68

MONTHLY CASH DISBURSEMENTS JOURNAL

PAGE 2

FOR NOVEMBER, 1987 PAGE 3

r
GOOD ITEMS

1104.78

BALANCE RUN

REJECT TOTAL
170.90

GRAND-TOTAL
1275.68

r
r First Edition 8-81

Sequential Files

'

COBOL85 allows you lo access records of a disk file in an established sequence. The record
sequence is established as a result of writing the records to the file.
This chapter discusses sequential file concepts, common operations on sequential files, and
PROCEDURE DIVISION verbs as they pertain to sequential file processing.

Note
The discussions in this chapter pertain to sequential disk files. See Chapter 12 for a discussion
of sequential tape files.

Sequential File Concepts

Organization

'
Sequential files are organized such that each record, except the last, has a unique successor
record, and each record, except the first, has a unique predecessor record. The successor
relationships are established by the order of execution of WRITE statements when the file is
created. Once established, successor relationships do not change, except in the case of records
being added to the end of a file.
A sequential disk file has the same logical structure as a sequential tape file. However, you
can use the REWRITE statement to update a sequential disk file in place. When you use
REWRITE, each updated record must be the same size as the original record. You cannot use
the REWRITE statement to add new records to the file.

Access Mode
The order of sequential access is the order in which the records are originally written to the
file.

r First Edition 9-1

COBOL85 Reference Guide

File Formats

You can use variable-length record formatting or fixed-length record formatting for PRIMOS
and PRISAM sequential files. For PRISAM files, the template for the file must define the
file's format consistent with the COBOL85 program definition. For additional information,
see the PRISAM User's Guide.

Figure 9-1 illustrates variable-length record format for PRIMOS sequential disk files.

RCW data-record-1 RCW data-record-2 RCW data-record-n

Q10166-1LA-3-0

where RCW = Record Control Word
(an octal value containing the size
in words of each data record)

data record n = actual data record

FIGURE 9-1
PRIMOS Sequential Variable-length Record Format

Notes
This file format is consistent with the FTNBIN format associated with variable-length record
files in FTN. Such a file cannot be accessed by ED, EMACS, SLIST, and so on.
Odd-length records contained in PRIMOS sequential disk files contain an extra byte of data to fill
the record out to the word boundary. This extra byte of data is undefined. For PRISAM sequential
files, odd-length records are padded in such a way that this extra byte is not visible to the user.

Current Record Pointer
The current record pointer is a conceptual entity used to indicate the next record to be
accessed within a given file. The setting of the current record pointer is affected only by the
OPEN, CLOSE, and READ statements. The concept of the current record pointer has no
meaning for a file opened in OUTPUT or EXTEND mode.

File Status
To determine the success or failure of an 1-0 operation, code a file status check in the
program. You then can use the result of the file status check to control the next program
action. If you specify the FILE STATUS clause in a file-control-entry, a value is
automatically placed into the FILE STATUS data item during the execution of an OPEN,
CLOSE, READ, WRITE, or REWRITE statement to indicate the status of that 1-0 operation.
The FILE STATUS clause is discussed in Chapter 6.

For a complete discussion of COBOL85 file status codes, see Chapter 4.

9-2 First Edition

Sequential Files

The AT END Condition
The AT END condition can occur as a result of a READ statement when no next logical
record exists in the file. When the AT END condition is recognized, these actions occur in
the following order:

1. A value indicating an AT END condition is placed into the FILE STATUS data item, if
you specify one for the file.

2. If you specify the AT END phrase in the statement that causes the condition, control is
transferred to the imperative statement in the AT END phrase. Any USE procedure that
you specify for the file is not executed. After the execution of the imperative statement,
control is transferred to the end of the 1-0 statement. The NOT AT END phrase, if you
specify one, is ignored.

3. If you do not specify the AT END phrase in the statement that causes the condition, but
you do specify a USE procedure, either explicitly or implicitly, that procedure is
executed.

The NOT AT END Condition
The NOT AT END condition can occur as a result of a successfully completed READ
statement. When the NOT AT END condition is recognized, these actions occur in the
following order:

1. The FILE STATUS data item, if you specify one, is updated to indicate a successful
completion.

2. If you specify the NOT AT END phrase, control is transferred to the imperative
statement associated with the NOT AT END phrase. After the execution of the
imperative statement in the NOT AT END phrase, control is transferred to the end of
the 1-0 statement. The AT END phrase, if you specify one, is ignored.

3. If you do not specify the NOT AT END phrase, control is transferred to the end of the
1-0 statement. The AT END phrase, if you specify one, is ignored.

Exception Conditions
Exception conditions can occur as a result of a Permanent Error condition or a Logic Error
condition. When an exception condition that is not an AT END condition occurs, these
actions occur in the following order:

1. A value indicating the exception condition is placed into the FILE STATUS data item,
if you specify one for the file.

2. If you specify a USE procedure for the file, that procedure is executed. Any AT END
and NOT AT END phrases are ignored.

3. Program execution terminates.

Chapter 4 includes a complete discussion of exception conditions and error recovery.

First Edition 9-3

CLOSE
Terminates the processing of files.

COBOL85 Reference Guide

Common Operations on Sequential Files
This section discusses the following common operations on sequential files:

• Opening and closing a file
• Reading a file
• Updating (changing) a record
• Creating (adding) records
• Handling 1-0 errors

Opening and Closing a File
You must open files with the OPEN statement before any other 1-0 statements are executed,
and you must close files with the CLOSE statement before the program ends. You must also
close files before reopening them in another mode of operation.

Reading a File
If a file is open, no special operation other than READ is necessary to read from the start of
the file in sequential order.

Updating (Changing) a Record
You must open the file for l-O. Use the READ statement to read the file and the REWRITE
statement to update records in place.

Creating (Adding) Records
Use the WRITE statement to add new records to the file.

Handling 1-0 Errors
The FILE STATUS data item, the AT END phrase in the READ statement, and USE
procedures in the declaratives section provide a means of handling 1-0 errors.

PROCEDURE DIVISION
This section contains information that pertains to sequential disk files. Chapter 8 contains
information that applies to all file organizations. Chapters 10, 11, and 12 contain information
that pertains to indexed files, relative files, and sequential tape files, respectively.

9-4 First Edition

OPEN

~

r

Sequential Files

Format
CLOSE file-name-1 [, file-name-2]

Syntax Rule
The files referenced in the CLOSE statement need not all have the same access or organization.

General Rules

1. Once a CLOSE stalement is executed for a file, no other statement can be executed for
that file unless an intervening OPEN statement for that file is executed.

2. A CLOSE statement can be executed only for a file that is open. If a CLOSE statement
is attempted on a file that is not open, the FILE STATUS data item, if you specify one,
is set to status code 42. After execution of any applicable declarative procedure, the
program terminates. For this particular error, the only applicable declarative procedure is
a procedure for file-name.

3. If any other error occurs during a CLOSE operation, the FILE STATUS data item, if
you specify one, is set to status code 30. Execution continues according to the mles
specified in Chapter 4.

CLOSE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a CLOSE statement: 00, 07, 30, 42, 99. For a complete discussion of
COBOL85 file status codes, see Chapter 4.

Initiates the processing of files and enables other 1-0 operations, such as reading and writing.

Format

open <
f INPUT file-name-1 [, file-name-2]
OUTPUT file-name-3 [, file-name-4]
l-O file-name-5 [, file-name-6]
EXTEND file-name-7 [,file-name-8\

Syntax Rules
1. The files referred to in the OPEN statement need not all have the same organization or

access.
2. You can use the EXTEND phrase only for sequential files assigned to PRIMOS,

PRISAM, PRINTER, or PFMS.
3. You can open files assigned to PRINTER only in OUTPUT or EXTEND mode.

First Edition 9-5

COBOL85 Reference Guide

4. You can open files assigned to OFFLINE-PRINT only in OUTPUT mode.
5. You can open files assigned to TERMINAL only in INPUT or OUTPUT mode.

General Rules

1. For each file, an OPEN statement must be executed prior to a READ, WRITE,
REWRITE, or CLOSE statement for that file.

2. An OPEN statement can be executed only for a file that is closed.
3. A file opened as INPUT can be accessed only by a READ statement.
4. A file opened as OUTPUT can be accessed only by a WRITE statement.
5. A file opened as 1-0 can be accessed by a READ, WRITE, or REWRITE statement.
6. A file opened as EXTEND can be accessed only by a WRITE statement.
7. If permitted for the device, a file can be opened with the INPUT, OUTPUT, EXTEND,

and 1-0 phrases in the same program. Following the initial OPEN, you must precede
each subsequent OPEN statement for the file by a CLOSE statement for the file.

8. OPEN OUTPUT causes PRIMOS to create a file if one does not exist. The ASSIGN
clause associated with the file must not state PRISAM as the file type. If the ASSIGN
clause does state PRISAM, the OPEN statement is unsuccessful. All other sequential file
OPEN statements cause the file to be created as a PRIMOS sequential file. The created
file contains no records.
If a PRIMOS or PFMS sequential file contains records when it is opened for OUTPUT,
the file is truncated. All other file types generate an error if the file contains records
when it is opened for OUTPUT.

9. For an optional file that is unavailable, the successful execution of an OPEN statement
with an EXTEND or 1-0 phrase creates the file. The ASSIGN clause associated with the
file must not state PRISAM as the file type.
For an optional file that is unavailable and is opened in INPUT mode, the first READ
statement to the file returns an end-of-file status code.
For an optional file that is available, file attributes are checked and normal OPEN
processing continues.

10. The file-description-entry for files opened with INPUT, l-O, or EXTEND must be
equivalent to that used when the file was created.

11. The current record pointer is a conceptual flag pointing to the next record to be accessed.
For files opened with the INPUT or 1-0 phrase, the OPEN statement sets the current
record pointer to the first record in the file. If no records exist in the file, the current
record pointer is set such that the next executed READ statement for the file results in an
AT END condition.

12. When you specify the EXTEND phrase, the OPEN statement opens the file, and moves
the current record pointer to the bottom of the file (immediately following the last logical
record). Subsequent WRITE statements to the file add records as if the file were opened
with the OUTPUT phrase, with the current record pointer at the end of the file.

13. The LABEL RECORDS ARE STANDARD clause is ignored for non-magtape files. No
label processing takes place on OPEN statements.

9-6 First Edition

READ

r

Sequential Files

14. If any system error occurs during the OPEN processing, a status code of 30 is returned.
An exception condition occurs, and the FILE STATUS field is updated, if one exists.
Exception conditions and file status are discussed in the section, Sequential File
Concepts, earlier in this chapter.

15. During the execution of the OPEN statement, COBOL85 checks file attributes against
the attributes described for the file in the program. These attributes are organization,
minimum and maximum logical record sizes, and the file type (fixed or variable).
If any of these attributes conflict, the OPEN statement is unsuccessful, and a status code
of 39 is returned. An exception condition occurs, and the FILE STATUS field is
updated, if one exists. Exception conditions and file status are discussed in the section,
Sequential File Concepts, earlier in this chapter.

16. An OPEN statement must be successfully executed for a file before any statement that
references the file (except SORT and MERGE) can be executed.

17. If an error occurs during an OPEN operation, the FILE STATUS data item, if you specify
one, is updated. Then control is transferred to the declarative procedure, if you specify
one. If a declarative procedure exists for the file-name being opened, it is invoked;
otherwise, if a declarative procedure exists for the open mode being attempted, it is
invoked. After execution of the declarative procedure, the program terminates.

18. A file referenced in a SORT or MERGE statement must not be open at the time of
execution of the SORT or MERGE statement. Once a file is opened under control of
SORT or MERGE, no 1-0 operation other than those under control of SORT or MERGE
can be executed until the sort or merge is completed.

OPEN Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of an OPEN statement: 00, 05, 07, 30, 35, 37, 39, 41, 99. For a complete
discussion of COBOL85 file status codes, see Chapter 4.

Makes available a record from a file.

Format
READ file-name RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Syntax Rule
You must specify the AT END phrase if you do not specify an applicable USE procedure for
file-name.

First Edition 9-7

COBOL85 Reference Guide

In either of these cases, the READ statement is successful and the FILE STATUS data
item, if you specify one, is set to 04 to indicate a record length conflict.

6. If you specify the INTO phrase, the record being read is moved from the record area to
the area specified by data-name-1, according to the mles for the MOVE statement
without the CORRESPONDING phrase. The implied MOVE does not occur if the
execution of the READ statement is unsuccessful. Any subscripting or indexing
associated with data-name-1 is evaluated after the record is read and immediately before
it is moved to the data item, data-name-1 must not be defined in the FD entry for the
file.

7. When you use the INTO phrase, the record being read is available in both the input
record area and the data area associated with data-name-1.

8. If, at the time of execution of a READ statement, the position of the current record
pointer for the file is undefined, the execution of the READ statement is unsuccessful.

9. If, at the time of execution of a READ statement, no next logical record exists in the file,
or an optional input file does not exist, the AT END condition occurs, and the execution
of the READ statement is unsuccessful.

General Rules

1. A file must be open for INPUT or 1-0 when a READ statement for the file is executed.
2. Execution of the READ statement makes a record available to the program, provided AT

END is not invoked. The READ statement uses the current record pointer, a conceptual
entity that points to the next record to be accessed. The record made available by the
READ statement is determined as follows:

• If the current record pointer is positioned by the execution of an OPEN statement,
the record indicated by the current record pointer is made available.

• If the current record pointer is positioned by the execution of a previous READ
statement, the current record pointer is set to point to the next record in the file, and
that record is made available.

3. The execution of the READ statement updates the value of any FILE STATUS data item
associated with file-name.

4. When you describe the logical records of a file with more than one record description,
these records automatically share the same storage area; this is equivalent to an implicit
redefinition of the area. The contents of any data items that lie beyond the range of the
current data record are undefined at the completion of execution of the READ statement.

5. For variable-length records, the following mles apply:

• If the number of character positions in the record that is read is less than the _-,,
minimum size specified in the record-description-entry, the portion of the record area
to the right of the last valid character read is undefined.

• If the number of character positions in the record that is read is larger than the
maximum size specified in the record-description-entry, the record is truncated on
the right to the maximum size.

9-8 First Edition

Sequential Files

10. When the AT END condition is recognized, these actions occur in the following order:

• A value indicating an AT END condition is placed into the FILE STATUS data item,
if you specify one for the file.

• If you specify the AT END phrase in the statement causing the condition, control is
transferred to imperative-statement-1. imperative-statement-2, if you specify one, is
ignored. Any USE procedure that you specify for the file is not executed.

• If you do not specify the AT END phrase, then you must specify a USE procedure
for the file. That procedure is now executed.

When the AT END condition occurs, execution of the 1-0 statement that caused the
condition is unsuccessful.

11. If an exception condition otiier than an AT END condition occurs, the FILE STATUS
data item, if you specify one, is set to indicate the error condition. After execution of
any applicable declarative procedure, the program terminates.

12. Following the unsuccessful execution of any READ statement, the contents of the
associated record area and the position of the current record pointer are undefined.

13. If no exception condition occurs and the AT END condition does not occur, the FILE
STATUS data item, if you specify one, is set to indicate a successful READ statement.
Control is transferred to the end of the READ statement, or to imperative-statement-2, if
you specify one.

14. The END-READ clause delimits the scope of the READ statement. For more
information, see the section Scope Terminators, in Chapter 8.

READ Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a READ statement: 00, 04, 10, 30, 46, 47, 93, 97, 99 (PRISAM only). For
a complete discussion of COBOL85 file status codes, see Chapter 4.

REWRITE

Logically replaces a record existing in a disk file.

Format
REWRITE record-name [FROM data-name]

[END-REWRITE]

Syntax Rules
1. The record-name and the data-name can refer to the same storage area.
2. The record-name is the name of a logical record in the FILE SECTION and can be

qualified.

First Edition 9-9

COBOL85 Reference Guide

WRITE

General Rules

1. The file containing record-name must be a disk file and must be open for 1-0 prior to
execution of a REWRITE statement.

2. The last 1-0 statement executed for the associated file prior to the execution of the
REWRITE statement must be a successfully executed READ statement. REWRITE
logically replaces the record that is accessed by the READ statement.

3. The number of character positions in the record referenced by record-name must be
equal to the number of character positions in the record being replaced.

4. Prime Extension: The logical record released by a successful execution of the
REWRITE statement is still available in the record area.

5. If you use the FROM phrase, the information in data-name is moved to the record area
prior to the REWRITE.

6. The current record pointer (the conceptual entity that determines the next record to be
accessed) is not affected by the execution of a REWRITE statement.

7. The execution of the REWRITE statement updates the value of any FILE STATUS data
item associated with the file.

8. A sequential file used with REWRITE must be either a nonprinter file created by
C0B0L85, or any uncompressed file. Compressed files cannot be rewritten. See Chapter
7 for more information about compressed files.

9. The END-REWRITE clause delimits the scope of the REWRITE statement. For more
information, see the section Scope Terminators, in Chapter 8.

REWRITE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a REWRITE statement: 00, 37, 43, 44, 49, 99 (PRISAM only). For a
complete discussion of COBOL85 file status codes, see Chapter 4.

Releases a logical record for an output or 1-0 file. Use it also to vertically position lines
within a logical page.

Format
WRITE record-name [FROM data-name-1]

fAFTER \
\BEFORE J

[END-WRITE1

ADVANCING Udata-name-2\ ["LINEinteger J |_LINES
PAGE

9-10 First Edition

Sequential Files

Syntax Rules
1. The record-name and data-name-1 can refer to the same storage area.
2. The record-name is the 01-level record-name of a logical record, described in a record-

description-entry in the FILE SECTION of the DATA DIVISION. It can be qualified.
3. When you use data-name-2 in the ADVANCING phrase, it must be the name of an

elementary integer data item.
4. The integer or the value of the data item referenced by data-name-2 must be in the range

0 through 62.

General Rules

1. The file associated with record-name must be open as OUTPUT or EXTEND.
2. Prime Extension: The logical record released by the execution of the WRITE statement

is still available in the record area.
3. If you name the associated file in a SAME RECORD AREA clause, the logical record is

available to the program as a record of other files referenced in the same SAME
RECORD AREA clause, as well as to the file associated with record-name.

4. If you use the FROM phrase, the information is moved to the record area prior to
execution of the WRITE statement. If the data being moved is longer than the receiving
field, the data is truncated to the size of the receiving field. If the receiving field is
longer than the sending field, the remaining area is space-filled.
After execution of the WRITE statement, the information in the area referenced by data-
name-1 is still available.

5. The current record pointer (the conceptual entity that determines the next record to be
accessed) is unaffected by the execution of a WRITE statement.

6. The execution of the WRITE statement causes the value of any FILE STATUS data item
associated with the file to be updated.

7. You establish the maximum record size for a file at the time you create the file, and you
must not subsequently change it.

8. The number of character positions on a disk required to store a logical record in a file
may or may not be equal to the number of character positions defined by the logical
description of that record in the program.

9. The execution of the WRITE statement releases a logical record to the file system.
10. The ADVANCING phrase is meaningful only if the file is assigned to PRINTER.
11. If you use the ADVANCING phrase, COBOL85 reserves the print control character

internally. Do not reserve the first position in the record as FILLER for the print control
character.

• If you use the BEFORE phrase, a line is written before advancing.
• If you use the AFTER phrase, spacing occurs first, and then the line is written.
• data-name-2 LINE(S) is the number of spacing lines required between data lines.

The value of data-name-2 must be in the range 0 through 62.

If you do not use the ADVANCING phrase, the default is one line.

First Edition 9-11

COBOL85 Reference Guide

12. Table 9-1 lists the significance of the integer values in the ADVANCING phrase.
13. If you specify PAGE, the record is presented on the logical page before or after

(depending on the phrase used) the device is repositioned to the next logical page.
14. If the number of character positions in record-name is larger than the largest or smaller

than the smallest number of character positions allowed for the file, an exception
condition exists and the contents of the record area are unaffected. The FILE STATUS
data item, if you specify one, is set to indicate the error condition, and execution
continues as specified in the section, 1-0 Status Codes and Error Recovery, in Chapter 4.

TABLE 9-1
Carriage Control Integer Values

Integer Carriage Control Actions

0 O v e r p r i n t i n g
1 Single spacing
2 Double spacing
3 Triple spacing
4 4-line spacing
5 5-line spacing
6 6-line spacing

62 62-line spacing
PAGE Skips to top of new page

15. When an attempt is made to write beyond the externally defined boundaries of a
sequential file, an exception condition exists and the contents of the record area are
unaffected. The FILE STATUS data item, if you specify one, is set to indicate the error
condition, and execution continues as specified in the section, 1-0 Status Codes and
Error Recovery, in Chapter 4.

16. The END-WRITE clause delimits the scope of the WRITE statement. For more
information, see the section, Scope Terminators, in Chapter 8.

WRITE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a WRITE statement: 00, 30, 34, 44, 48, 97, 99. For a complete discussion
of COBOL85 file status codes, see Chapter 4.

Example
See the examples at the end of Chapters 5, 6, 7, and 8.

9-12 First Edition

Indexed Files

r

COBOL85 allows random or sequential access of records in an indexed disk file. Each record
in an indexed file is uniquely identified by the value of one or more keys within that record.
COBOL85 processes indexed files created with the MIDASPLUS or PRISAM interface.
Each COBOL85 record key corresponds to a MIDASPLUS or PRISAM index. See the
MIDASPLUS User's Guide for information on preparing files for COBOL85 access with
MIDASPLUS. Throughout this chapter references are made to MIDASPLUS utilities. If you
use PRISAM, see the PRISAM User's Guide for information about creating indexed files.
This chapter discusses indexed file concepts, common operations on indexed files, and
elements of the ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE
DIVISION as they pertain to indexed file processing. The chapter concludes with an
example.

Indexed File Concepts
This section discusses the following indexed file concepts:

• Organization
• Primary and secondary keys
• Access modes
• File formats
• Current record pointer
• File status
• INVALID KEY condition
• NOT INVALID KEY condition
• AT END condition
• NOT AT END condition
• Exception conditions

First Edition 10-1

COBOL85 Reference Guide

Organization
An indexed file is a disk file in which data records can be accessed by the value of a key. A
record description must include one or more data items used as keys, each of which is
associated with a MIDASPLUS or PRISAM index.

MIDASPLUS or PRISAM creates the records of an indexed file in any order on a disk, and
also constructs one or more files of indexes. The value of the key field in the program, as
related to the file's indexes, controls all access lo the records in the indexed file. Figure 10-1
represents an indexed file and a file of indexes.

Index File
Primary
Key

FIGURE 10-1
Indexed Record File and File of Indexes

Record File

4800 Tom 210 Mockingbird Lane

5101 Dick 82 Lovers Lane

2211 Mary 9980 Belt Line Road

2210 Kilroy 20 Passim

3202 Jude 3211 Harry Hines

5102 Judy 4800 LBJ

3506 Donna 98 Ledbetter

3201 Ruby 1300 Turtle Creek

Q10I66-1LA-2I-0

Primary and Secondary Keys
For inserting, updating, and deleting records in a file, the value of a record key identifies
each record. The data item named in the RECORD KEY clause of a file-control-entry for a
file is the primary record key for that file. The ALTERNATE RECORD KEY clause
designates secondary keys.
A secondary or alternate record key corresponds to a MIDASPLUS or PRISAM secondary
index.

Access Modes
COBOL85 supports three access modes for indexed files. Specify them in the SELECT
clause as follows:

10-2 First Edition

Indexed Files

• In sequential access mode, COBOL85 accesses records in ascending order of record key
values. In Ihe case of duplicate secondary key values, COBOL85 relrieves the records in
the order in which they occur in the file.

• In random access mode, the program controls the sequence in which it accesses records.
To access a particular record, the program places the value of the record's key in the
corresponding field of the record-description-entry.

• In dynamic access mode, you can change at will from sequential access to random
access for reading the file. The section Common Operations on Indexed Files, later in
this chapter, discusses access mode requirements for each 1-0 statement.

File Formats
You can use variable-length record formatting or fixed-length record formatting for
MIDASPLUS and PRISAM indexed files. The template for the file must define the file's
format consistent with the COBOL85 program definition. For additional information, see the
MIDASPLUS User's Guide and the PRISAM User's Guide.

Note
Odd-length records contained in MIDASPLUS indexed files contain an extra byte of data to fill
the record out to the word boundary. This extra byte of data is undefined. For PRISAM indexed
files, odd-length records are padded in such a way that this extra byte is not visible to the user.

Current Record Pointer
The current record pointer is a conceptual entity used to indicate the next record to be
accessed within a given file. Only the OPEN, START, DELETE, and READ statements
affect the setting of the current record pointer.

File Status
Code a file status check in the program to determine the success or failure of an 1-0
operation. Then use the result of the file status check to control the next program action. If
you specify the FILE STATUS clause in a file-control-entry, C0B0L85 places a value into
the specified data item during the execution of a READ, WRITE, REWRITE, DELETE,
OPEN, CLOSE, or START statement to indicate the status of that input-output operation.
The section ENVIRONMENT DIVISION, later in this chapter, discusses the FILE STATUS
clause. For a complete discussion of COBOL85 file status codes, see Chapter 4.

The INVALID KEY Condition
The INVALID KEY condition can occur as a result of the execution of a START, READ,
WRITE, REWRITE, or DELETE statement. For details of the causes of the condition, see
the relevant statement.
When the INVALID KEY condition occurs, COBOL85 performs the following steps:

1. A value is placed into the FILE STATUS data item, if you specify one for the file, to
indicate an INVALID KEY condition.

First Edition 10-3

' ■

COBOL85 Reference Guide

2. If you specify the INVALID KEY phrase in the statement causing the condition,
control is transferred to the INVALID KEY imperative statement. Any USE procedure
that you specify for the file is not executed. After the execution of the INVALID KEY
imperative statement, control is transferred to the end of the 1-0 statement and the NOT
INVALID KEY phrase, if you specify one, is ignored.

3. If you do not specify the INVALID KEY phrase for the file, but you specify a USE
procedure, either explicitly or implicitly, that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output statement that
caused the condition is unsuccessful and the file is not affected.

The NOT INVALID KEY Condition
If the 1-0 operation is successful, COBOL85 performs the following steps:

1. The FILE STATUS data item, if you specify one, is updated to indicate a successful
completion.

2. If you specify the NOT INVALID KEY phrase, control is transferred to the imperative
statement associated with the NOT INVALID KEY phrase. After the execution of this
imperative statement, control is transferred to the end of the 1-0 statement and the
INVALID KEY phrase, if you specify one, is ignored.

3. If you do not specify the NOT INVALID KEY phrase, control is transferred to the end
of the 1-0 statement and the INVALID KEY phrase, if you specify one, is ignored.

The AT END Condition
The AT END condition can occur as a result of a sequential READ statement when no next
logical record exists in the file. When the AT END condition occurs, COBOL85 performs the
following steps:

1. A value is placed into the FILE STATUS data item, if you specify one for the file, to
indicate an AT END condition.

2. If you specify the AT END phrase in the statement causing the condition, control is
transferred to the AT END imperative statement. Any USE procedure that you specify
for the file is not executed. After the execution of the AT END imperative statement,
control is transferred to the end of the 1-0 statement and the NOT AT END phrase, if
you specify one, is ignored.

3. If you do not specify the AT END phrase for the file, but you specify a USE
procedure, either explicitly or implicitly, that procedure is executed.

The NOT AT END Condition
The NOT AT END condition can occur as a result of a successfully completed sequential
READ statement. When the NOT AT END condition occurs, COBOL85 performs the
following steps:

1. The FILE STATUS data item, if you specify one, is updated to indicate a successful
completion.

10-4 First Edition

Indexed Files

2. If you specify the NOT AT END phrase, control is transferred to the imperative
statement associated with the NOT AT END phrase. After the execution of the NOT
AT END imperative statement, control is transferred to the end of the 1-0 statement
and the AT END phrase, if you specify one, is ignored.

3. If you do not specify the NOT AT END phrase, control is transferred to the end of the
1-0 statement and the AT END phrase, if you specify one, is ignored.

Exception Conditions
Exception conditions can occur as a result of a Permanent Error condition or a Logic Error
condition. (See Chapter 4.) When an exception condition that is not an INVALID KEY or
AT END condition occurs, C0B0L85 performs the following steps:

1. A value is placed into the FILE STATUS data item, if you specify one for the file, to
indicate the exception condition.

2. If you specify a USE procedure for the file, that procedure is executed. Any INVALID
KEY, NOT INVALID KEY, AT END, NOT AT END phrases are ignored.

3. Program execution terminates.

Common Operations on Indexed Files
This section discusses the following common operations on indexed files:

• Creating a file
• Positioning the file to a certain record
• Reading a certain record
• Establishing a key
• Deleting a certain record
• Updating (changing) a certain record
• Creating (adding) records
• Handling errors

The concept of record key is essential for most of the following operations on indexed files,
because only the keys or indexes allow access to the data records themselves.

Creating a File
To create a MIDASPLUS file, use the MIDASPLUS CREATK command to create an index
template. Then build a file on that template either with the MIDASPLUS KBUILD command
and an existing data file, or with a COBOL85 program. In some cases, the COBOL85
program creates an indexed file. See the OPEN statement for details.
The COBOL85 program must describe the new file's organization as INDEXED, and open it
in one of the three access modes discussed earlier.

First Edition 10-5

COBOL85 Reference Guide

For more information on using CREATK and KBUILD, see the MIDASPLUS User's Guide.
For information on creating PRISAM files, see the PRISAM User's Guide.

Positioning the File to a Certain Record
In sequential or dynamic access mode, use START to position the file if you do not want to
access the first record. If you want to sequentially read groups of records within the file, use
additional START statements.
In random access mode, all READs use the primary key unless you use the KEY IS clause.
Do not use START in random access mode.

Reading a Certain Record
If you open a file in sequential access mode, no special operations other than READ are
necessary to read from the start of the file in sequential order of the primary key. If you do
not want to read the first record, or if you want to read the file in secondary key order,
precede the first READ by a START to specify the key of the first record you want to read.
(START is required to establish a secondary key of reference.) All subsequent READs access
each next record in key order until the program executes another START or closes the file, or
an error occurs.
In random access mode all READs use the primary key unless you include the KEY IS
clause.
If you want to access the file both sequentially and randomly, specify dynamic access mode.
To change from random to sequential reading, use a series of Format 1 READs (READ
NEXT).

Establishing a Key
The default key for any 1-0 verb is the primary key. To establish a secondary key, use
START KEY IS ... data-name or READ ... KEY IS data-name.

Deleting a Certain Record
The file must be open in 1-0 mode. In sequential access mode, first read the record to be
deleted; then use the DELETE verb. In random or dynamic access mode, place the proper
value in the key field before using DELETE.

Updating (Changing) a Certain Record
The file must be open in 1-0 mode. In any access mode, first read the record to ensure that
another program mnning concurrently cannot update it; then use the REWRITE verb. See the
REWRITE statement, later in this chapter, for more information on reading the record in
advance of rewriting it.

10-6 First Edition

Indexed Files

Creating (Adding) Records
Add new records with the WRITE statement. In sequential access mode, insert records in
ascending order. Before writing each record, place a unique value in the primary key field.

Handling Errors in All of These Statements
The INVALID KEY clause and the USE statement in the declaratives section provide error
handling. One of these elements is required for each 1-0 statement. Use the AT END phrase
only for a sequential READ. Use USE statements in the declaratives section to provide error
handling for non-end-of-file errors for a sequential READ, and for non-invalid-key errors.

ENVIRONMENT DIVISION
This section contains information that is unique to indexed files. Chapter 6 contains
information that applies to all file organizations. Chapters 11 and 12 contain information that
applies to relative files and sequential tape files, respectively.

INPUT-OUTPUT SECTION — FILE-CONTROL
Use the INPUT-OUTPUT SECTION to specify peripheral devices and information needed to
transmit and handle data between the devices and the program.

Use the FILE-CONTROL paragraph to name each file and to specify other file-related
information. Each file requires one file-control-entry.

Format
SELECT [OPTIONAL] file-name-1

ASSIGN TO S*evice;na™\
yiteral-1 J

[reserve ttw^pgk]]
[ORGANIZATION IS] INDEXED

f SEQUENTIAL^ '
ACCESS MODE IS J RANDOM I

[dynamic J

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] • • •

[FILE STATUS IS data-name-3].

First Edition 10-7

COBOL85 Reference Guide

General Rules

1. The SELECT clause specifies the name of the indexed file. You must specify the
SELECT clause first in the file-control-entry. The remaining clauses can appear in any
order. COBOL85 manages all indexed files with either the MIDASPLUS interface or the
PRISAM interface. Use ASSIGN TO MIDASPLUS to access MIDASPLUS files or
ASSIGN TO PRISAM to access PRISAM files. You can also specify ASSIGN TO
PFMS for compatibility with previous Prime COBOL compilers, but access is not as
efficient.

2. The ORGANIZATION IS INDEXED clause specifies that the file named in the
SELECT clause contains data organized by indexes. You establish file organization at
the time you create the file, and you cannot subsequently change it.

3. The ACCESS MODE clause specifies the manner in which the program is to read or
write to an indexed file. If you omit this clause, the default is sequential access. The
three access modes are described below:
• When you specify SEQUENTIAL, COBOL85 writes and retrieves records in the

order of ascending values for a given key field.
• When you specify RANDOM, COBOL85 writes and retrieves records randomly

only, based on the value placed in the RECORD KEY field prior to a READ or
WRITE. You must place the complete RECORD KEY value in data-name-1 prior to
every access operation; otherwise, the record is not found. Random mode precludes a
sequential READ NEXT.

• When you specify DYNAMIC, a program can read randomly or sequentially. Other
operations follow the mles for random access, except that you can use START in
dynamic access.

4. The RECORD KEY clause specifies the data item within each record that is used as the
primary index.
• data-name-1 must be within the record-description-entry.
• data-name-1 must not be of variable size.
• Prime Extension: data-name-1 can be cither alphanumeric or numeric.
• Multiple record-description-entries must have the same data description in the same

relative position for the record key.
• Do not specify data-name-1 with an OCCURS clause, or include it within a group

subordinate to an OCCURS clause. This means it must not be subscripted or indexed,
but it can be qualified. If data-name-1 occurs more than once in the program, then it
must be fully qualified.

• Prime Restriction: Do not specify data-name-1 with a P character or a separator
sign in its PICTURE clause. It cannot exceed 64 characters.

• data-name-1 must have the same description as the primary index in the file template
created with CREATK or DDL.

• The value contained within data-name-1 must be unique for each record in a file.

5. The ALTERNATE RECORD KEY clause specifies a data item within each record that
is used as a secondary index. You can specify a maximum of 17 alternate record keys.
The number of alternate record keys cannot be greater than the number of secondary
indexes specified in the file template created with CREATK.

10-8 First Edition

Indexed Files

Alternate record keys must be part of the record-description-entry, but they must neither
be embedded within nor overlap the primary record key. Alternate keys must not start in
the same position as any other key. They follow the rules for RECORD KEY above,
except that an alternate key can have duplicates.
The WITH DUPLICATES clause specifies that records in the file can contain secondary
keys having the same value. Specify WITH DUPLICATES only if duplicates are
allowed for the corresponding secondary index in the MIDASPLUS template. If you do
not specify WITH DUPLICATES, the secondary key value in each record must be
unique.
Define secondary keys in the same order as the corresponding MIDASPLUS indexes.
The first secondary key that you specify is equivalent to MIDASPLUS index number 1,
the second key is equivalent to MIDASPLUS index number 2, and so forth.
Alternate record keys can be nonnumeric.

6. In the FILE STATUS clause, data-name-3 must be a two-character field described in the
DATA DIVISION. The file control system moves a value into data-name-3 following
the execution of every statement that explicitly or implicitly references the file. This
value indicates the execution status of the statement. Following a successful 1-0
operation, data-name-3 contains '00'. For a complete discussion of C0B0L85 file status
codes, see Chapter 4.
Prime Extension: data-name-3 can be either alphanumeric or numeric (PIC XX or PIC
99).

7. The FILE STATUS item (data-name-3) must not be part of the record description for
the file. It must be in the WORKING-STORAGE or LINKAGE SECTION. It can be
qualified but must not be subscripted or indexed.
If the file-description-entry specifies EXTERNAL, the FILE STATUS item (data-
name-3) is also EXTERNAL; therefore, do not define it in the LINKAGE SECTION.

DATA DIVISION

r The elements of the DATA DIVISION are the same for indexed files as those described in
Chapter 7, except for the record-description-entry.

record-description-en try
Each record must have a unique value for the primary key. Rules for primary and secondary
keys are given in the section ENVIRONMENT DIVISION, above.
COBOL85 record lengths and MIDASPLUS or PRISAM record lengths must be the same.

PROCEDURE DIVISION
This section contains information that pertains to indexed files. Chapter 8 contains
information that applies to all file organizations. Chapters 9, 11, and 12 contain information
that pertains to sequential disk files, relative files, and sequential tape files, respectively.

-

r First Edition 10-9

COBOL85 Reference Guide

CLOSE

DELETE

Terminates the processing of files.

Format
CLOSE file-name-1 [,file-name-2]

Syntax Rule
The files named in the CLOSE statement need not all have the same organization or access.

General Rules

1. Once a program executes a CLOSE statement for a file, it must execute an OPEN
statement for that file before executing any other statements for that file.

2. A program can execute a CLOSE statement only for a file that is open. If a CLOSE
statement is attempted on a file that is not open, the file status data item, if you specify
one, is set to indicate status code 42. After execution of any applicable declarative
procedure, the program terminates. For this particular error, the only applicable
declarative procedure is a procedure for file-name.

3. If any other error occurs during a CLOSE operation, the file status data item, if you
specify one, is updated to indicate status code 30. Execution continues according to the
rules specified in Chapter 4.

Logically removes a record from a file.

Format
DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

Syntax Rules
1. Do not specify the INVALID KEY and the NOT INVALID KEY phrases for a

DELETE statement that references a file that is in sequential access mode.
2. You must specify the INVALID KEY phrase for a DELETE statement on a file that is

not in sequential access mode and for which you specify no USE procedure.

10-10 First Edition

OPEN

Indexed Files

General Rules

1. The DELETE statement logically removes a data record from the indexed file together
with all the associated index entries. The file must be open for l-O. Execution of
DELETE updates the value of the FILE STATUS data item, if you specify one. It does
not affect the contents of the record area associated with file-name.

2. Transfer of control following the successful or unsuccessful execution of the DELETE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the file. See the section Indexed File Concepts, earlier in this chapter, for more
information.

3. The END-DELETE clause delimits the scope of the DELETE statement. For more
information, see the section Scope Terminators, in Chapter 8.

Rules for Sequential Access

1. In sequential access, the program must successfully read a record before deleting it.
Otherwise, an exception condition occurs, and the DELETE statement is unsuccessful. A
status code of 43 is placed in the FILE STATUS field, if you specify one. Exception
conditions and file status are discussed in the section Indexed File Concepts, earlier in
this chapter.

2. You must not change the primary record key between the READ and DELETE
statements.

Rules for Random and Dynamic Access

1. Random and dynamic access modes require that you place the primary key of the record
to be deleted in the RECORD KEY field.

2. If that record does not exist in the file, the INVALID KEY statement is executed, and a
status code of 23 is placed in the FILE STATUS field, if one exists. INVALID KEY and
FILE STATUS are discussed in the section Indexed File Concepts, earlier in this chapter.

DELETE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a DELETE statement: 00, 23, 43, 49, 99. For a complete discussion of
COBOL85 file status codes, see Chapter 4.

Initiates the processing of files, and performs other input-output operations.

First Edition 10-11

COBOL85 Reference Guide

Format

{INPUT file-name-1 [, file-name-2]
OUTPUT file-name-3 [, file-name-4]
l-O file-name-5 [, file-name-6]

General Rules

1. A file opened as INPUT can be accessed only in a READ or START statement.
2. A file opened as OUTPUT can be accessed only in a WRITE statement.
3. A file opened as 1-0 can be accessed by a READ, WRITE, REWRITE, START, or

DELETE statement.

Note
You cannot use all 1-0 statements in all access modes. Table B-8 in Appendix B specifies
the types of 1-0 statements permissible with the different access modes.

4. Following the initial execution of an OPEN statement for a file, the program must close
the file before it can open the file again.

5. Execution of the OPEN statement does not obtain or release the first data record.
However, for files opened in INPUT or 1-0 mode, the OPEN statement positions the file
to the first record.

6. The file-description-entry for an opened file must be equivalent to the file's template
created by the FAU or CREATK utility. For MIDASPLUS variable-length files, supply
the minimum and maximum sizes during CREATK. See the MIDASPLUS User's Guide
for more information.

7. For PRISAM files opened in OUTPUT mode or an OPTIONAL file opened in 1-0
mode, OPEN does not create an indexed file. It merely opens an existing file for writing.
You must create the file template with the PRISAM FAU utility. If the file is not
present, the OPEN does not occur. A status code of 37 is returned, declaratives are
invoked, if present, and the program terminates.

8. For MIDASPLUS and PFMS files opened in OUTPUT mode or an OPTIONAL file
opened in 1-0 mode, if the file is not present, OPEN creates the file. COBOL85 builds a
template using runtime calls to CREATK and using information in the program to
describe the file to MIDASPLUS.

9. For MIDASPLUS and PRISAM files opened in OUTPUT mode, if the file is present
and contains data, the OPEN statement is unsuccessful, and a status code of 37 is
returned. An exception condition occurs, and the FILE STATUS field is updated, if one
exists. Exception conditions and file status are discussed in the section Indexed File
Concepts, earlier in this chapter.

10. If any system error occurs during the OPEN processing, a status code of 30 is returned.
An exception condition occurs, and the FILE STATUS field is updated, if one exists.
Exception conditions and file status are discussed in the section Indexed File Concepts,
earlier in this chapter.

11. During the execution of the OPEN stalement, COBOL85 checks file attributes against
the attributes described for the file in the program. These attributes are organization,
primary key, secondary keys, minimum and maximum logical record sizes, and the file
type (fixed or variable, MIDASPLUS or PRISAM).

10-12 First Edition

READ

r
r

Indexed Files

If any of these attributes conflict, the OPEN statement is unsuccessful, and a status code
of 39 is returned. An exception condition occurs, and the FILE STATUS field is
updated, if one exists. Exception conditions and file status are discussed in the section
Indexed File Concepts, earlier in this chapter. If the SELECT statement associated with
the file specifies MIDASPLUS as the assigned device, MIDASPLUS is used to open the
file.

12. If the SELECT statement associated with the file specifies PRISAM as the assigned
device, PRISAM is used to open the file. If the SELECT statement associated with the
file specifies PFMS as the assigned device, an internal check is made to see if the file is
a MIDASPLUS or a PRISAM file. All subsequent 1-0 operations are performed using
the appropriate data management interface.

13. If an unavailable optional file is opened with the INPUT phrase, the OPEN statement
sets the current record pointer to indicate the AT END condition. The OPEN statement is
successful. The FILE STATUS data item is set to the informational status code 05.

OPEN Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of an OPEN statement: 00, 05, 07, 30, 35, 37, 39, 41, 99. For a complete
discussion of COBOL85 file status codes, see Chapter 4.

For sequential access, READ makes available the next logical record from a file; for random
access, READ makes available a record with a specific key.

Format 1 (Sequential or Dynamic)
RE\D file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2 (Random or Dynamic)
READ file-name RECORD [INTO data-name-1]

[KEY IS data-name-2]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

First Edition 10-13

COBOL85 Reference Guide

Syntax Rules
1. The file-name must be the name of an indexed file with sequential or dynamic access.
2. The key name (data-name-2) must be the name of a data item that you specify as a

record key associated with file-name.
3. The key name can be qualified. It must not be subscripted or indexed.
4. You must specify the INVALID KEY phrase (Format 2) or the AT END phrase (Format

1) if you do not specify an applicable USE procedure for file-name.

General Rules

1. You can use the INTO phrase when the input file contains logical records of various
sizes.
Prime Extension: The storage area associated with data-name-1 and the record area
associated with file-name can be the same storage area.

2. The associated file must be open in the INPUT or 1-0 mode at the time this statement is
executed.

3. The execution of the READ statement updates the value of any FILE STATUS data item
associated with file-name. File status is discussed in the section Indexed File Concepts,
earlier in this chapter.

4. If you specify the INTO phrase, the record being read is moved from the record area to
data-name-1 according to the mles specified for the MOVE statement without the
CORRESPONDING phrase. The implied MOVE does not occur if the execution of the
READ statement is unsuccessful. Any subscripting or indexing associated with data-
name-1 is evaluated after the record is read and immediately before it is moved to the
data item.
When you use the INTO phrase, the record being read is available in both the input
record area and data-name-1.

5. For variable-length records, the following rules apply:

• If the number of character positions in the record that is read is less than the
minimum size specified in the record-description-entry, the portion of the record area
to the right of the last valid character read is undefined.

• If the number of character positions in the record that is read is greater than the
maximum size specified in the record-description-entry, the record is truncated on
the right to the maximum size.

In either of these cases, the READ statement is successful, and the FILE STATUS data
item, if you specify one, is set to 04 to indicate a record length conflict.

6. When the key value for the current key of reference is equal to the value of the same key
in the next logical record within the current key of reference, the FILE STATUS item, if
you specify one, is set to an informational status code, 02, to indicate that a duplicate
record exists.

7. Following the unsuccessful execution of any READ statement, the contents of the
associated record area and the position of the current record pointer are undefined. For
indexed files the key of reference is also undefined.

10-14 First Edition

Indexed Files

8. Transfer of control following the successful or unsuccessful execution of the READ
operation depends on the presence or absence of the optional INVALID KEY, NOT
INVALID KEY, AT END, and NOT AT END phrases, and on the presence or absence
of USE procedures associated with the READ statement. See the section Indexed File
Concepts, at the beginning of this chapter, for more information.

9. The END-READ clause delimits the scope of the READ statement. For more
information, see the section Scope Terminators, in Chapter 8.

Rules for Format 1 (Sequential and Dynamic Access)

1. Use Format 1 for all files in sequential access mode. The NEXT phrase is optional and
has no effect for sequential access.

2. The NEXT phrase is required for files in dynamic access mode, when you want to
retrieve records sequentially.

3. The record made available by a Format 1 READ statement is determined as follows:

• If the current record pointer was positioned by the START or OPEN statement, the
record to which it points is made available, provided that it is still accessible. If the
record is no longer accessible, perhaps because the record is deleted or an alternate
record key is changed, the current record pointer is updated to point to the next
existing record within the established key of reference. That record is then made
available.

• If the current record pointer was positioned by the execution of a previous READ
statement, the current record pointer is updated to point to the next existing record in
the file with the established key of reference and that record is made available.

• For an indexed file in the dynamic access mode, the execution of an OPEN 1-0
statement followed by one or more WRITE statements and then a READ NEXT
statement causes the READ NEXT statement to access the first record in the file.
However, if the WRITE statement inserted records with a key value lower than that
of any records previously existing in the file, these records are returned by the first
READ NEXT statement.

• If an alternate key is the key of reference, and the alternate key is changed by a
REWRITE statement to a value between the current value and the next value in the
file, a subsequent READ NEXT statement obtains the record just rewritten.

• If the current record pointer was established by a previous READ statement, and the
current key of reference does not allow duplicates, the first existing record in the file
whose key value is greater than the current record pointer is selected. In other words,
without the WITH DUPLICATES phrase, a sequential READ statement reads only
the first duplicate and skips to the next nonduplicated key.

4. If, at the time of execution of a Format 1 READ statement, the position of the current
record pointer for that file is undefined, the execution of that READ statement is
unsuccessful. The FILE STATUS data item, if you specify one, is set to 46, and an
exception condition occurs.

5. If, at the time of the execution of a Format 1 READ statement, no next logical record
exists in the file or an optional input file is unavailable, the AT END condition occurs,
and the execution of the READ statement is unsuccessful.

First Edition 10-15

COBOL85 Reference Guide

6. When the AT END condition occurs,

a. A value of 10 is placed into the FILE STATUS data item, if you specify one for the
file, to indicate an AT END condition.

b. If you specify the AT END phrase, control is transferred to the associated
imperative-statement. Any USE procedure you specify for this file is not executed.

c. If you do not specify the AT END phrase, then the USE procedure you specify for
this file is executed. Otherwise, execution is aborted.

7. When the AT END condition occurs, the program must not execute a Format 1 READ
statement for that file without first executing one of the following:

• A successful CLOSE statement followed by the execution of a successful OPEN
statement for that file

• A successful START statement for that file
• A successful Format 2 READ statement for that file

8. If an AT END condition does not occur during the execution of a READ statement and
the READ statement is successful, the AT END phrase, if you specify one, is ignored,
and the following actions occur:

a. The current record pointer is set and the FILE STATUS data item, if you specify
one for this file, is updated.

b. The record is made available in the record area and any implicit move resulting from
the presence of an INTO phrase is executed. Control is transferred to the end of the
READ statement or to the imperative-statement specified by the NOT AT END
phrase, if you specify one for the file.

9. If an exception condition that is not an AT END conditon exists, the FILE STATUS
item is updated and control is transferred according to the rules for the USE statement.

10. In dynamic access mode, a Format 1 READ NEXT statement retrieves the next logical
record from the file as described in General Rule 3 for Format 1.

11. If an alternate record key is the key of reference and duplicates are allowed, records
having the same value in that key are read in the same order in which they were written.

12. For a Format 1 READ statement, include a USE procedure in the program to handle any
non-end-of-file errors that may occur. This action may be necessary to handle errors that
may occur when multiple users are accessing a MIDASPLUS or PRISAM file that has
been opened in 1-0 mode. This USE procedure also handles other unexpected conditions
that may be generated during sequential file access.

Rules for Format 2 (Random and Dynamic Access)

1. Use Format 2 for files in random access mode or for files in dynamic access mode when
you want to retrieve records randomly.

2. If an optional input file is unavailable, the INVALID KEY condition exists and the
READ statement is unsuccessful.

" >

10-16 First Edition
" >

Indexed Files

3. For an indexed file, if you specify the KEY phrase in a Format 2 READ statement, data-
name-2 is established as the key of reference for this retrieval.

4. If you do not specify the KEY phrase in a Format 2 READ statement, the primary record
key is established as the key of reference for this retrieval. If you specify dynamic
access mode, this key of reference is also used for retrievals by any subsequent Format 1
READ statements for the file until the program establishes a different key of reference
for the file.

5. Execution of a Format 2 READ statement compares the value of the key of reference
with the value contained in the corresponding index until the record having an equal
value is found or, for a secondary key, the first record having the value is found. The
current record pointer is positioned to this record, which is then made available. If no
record can be so identified, the INVALID KEY condition exists and execution of the
READ statement is unsuccessful.

READ Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a READ statement: 00, 02, 04, 10, 23, 30, 46, 47, 90, 97, 99. For a
complete discussion of C0B0L85 file status codes, see Chapter 4.

REWRITE

Logically replaces a record on a disk file.

Format
REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

Syntax Rules
1. The record-name and the data-name can refer to the same storage area.
2. The record-name is the name of a logical record in the FILE SECTION of the DATA

DIVISION and can be qualified.
3. In random or dynamic access mode, you must specify the INVALID KEY phrase in the

REWRITE statement for files for which you do not specify an appropriate USE
procedure.

4. Do not specify the INVALID KEY and the NOT INVALID KEY phrases for a
REWRITE statement that references a file that is in sequential access mode.

" First Edition 10-17

COBOL85 Reference Guide

General Rules

1. In sequential access mode, the program must successfully read a record prior to the
REWRITE statement to ensure that the record is locked and cannot be updated by
another program mnning concurrently.

2. In dynamic or random access mode, a READ statement is not required prior to a
REWRITE, unless the current key of reference is a secondary key. When a READ
statement is not required and has not been executed, the primary key specifies the record
to be replaced.

3. If a required READ statement is not executed prior to the REWRITE, the REWRITE
statement is unsuccessful and status code 43 is returned. An exception condition exists
and the FILE STATUS field is updated, if one exists.

4. The REWRITE statement can change any or all data fields in the record except the
primary record key. If a prior READ is required, and if the program changes the primary
key last read, the REWRITE statement is unsuccessful, and a status code 21 is returned.
The INVALID KEY condition occurs and the FILE STATUS field is updated, if one
exists. INVALID KEY conditions and file status are discussed in the section Indexed
File Concepts, earlier in this chapter.

5. The file must be open for 1-0 for all access methods.
6. The FROM option allows you to create the record in another area. It is equivalent to

MOVE data-name TO record-name

prior to the execution of the REWRITE statement. The primary key value must equal the
key from the previous READ, or the INVALID KEY condition occurs.

7. The number of character positions in the record referenced by record-name must be
equal to the number of character positions in the record being replaced.

8. Prime Extension: The logical record released by a successful execution of the
REWRITE statement is still available in the record area.
If you name the associated file in a SAME RECORD AREA clause, the logical record is
also available to the program as a record of other files appearing in the same clause.

9. The execution of the REWRITE statement updates the value of any FILE STATUS data
item associated with the file.

10. During a REWRITE operation, the contents of the alternate record key data item of the
record being rewritten can differ from the value being replaced. If the new value is a
duplicate of another record in the file and if you specify WITH DUPLICATES, an
informational status code 02 is placed in the FILE STATUS data item, if one exists. The
record is logically positioned last within the set of duplicates. If you do not specify
WITH DUPLICATES, the INVALID KEY condition exists, and a status code 22 is
placed in the FILE STATUS data item, if one exists.

Note
For PRISAM files, if you specify the WITH DUPLICATES phrase in the program, but the
DDL specification does not allow duplicates, COBOL85 returns status code 22. However,
during sequential access of such a file with a secondary key of reference, the current file
position is undefined.

10-18 First Edition

Indexed Files

11. Transfer of control following the successful or unsuccessful execution of the REWRITE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the REWRITE statement. See the section Indexed File Concepts, earlier in this
chapter, for more information.

12. The END-REWRITE clause delimits the scope of the REWRITE statement. For more
information, see the section Scope Terminators, in Chapter 8.

13. A REWRITE statement does not affect the current file position.

REWRITE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a REWRITE statement: 00, 02, 21, 22, 30, 43, 44, 49, 99. For a complete
discussion of COBOL85 file status codes, see Chapter 4.

SEEK — Prime Extension
Is supported syntactically only for compatibility with other COBOL implementations.

Format
SEEK file-name RECORD

General Rules

1. SEEK is treated as documentation in COBOL85.
2. You must define Ihe file-name by a file-description-entry in the DATA DIVISION.

r

r
r First Edition 10-19

COBOL85 Reference Guide

START
Establishes a position in the file for subsequent READs.

Format

START file-name KEY IS <

f NOT LESS THAN OR EQUAL TO
NOr <=
GREATER THAN OR EQUAL TO
>=
EQUAL TO

GREATER THAN
> data-name

NOT LESS THAN
NOT <

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

Syntax Rules
1. The file-name must be the name of an indexed file with sequential or dynamic access.
2. The data-name can be qualified but not indexed or subscripted.
3. You must specify the INVALID KEY phrase if you do not specify an applicable USE

procedure for file-name.
4. The data-name must reference one of the following:

• A data item that is a record key
• A data item that is an alternate record key
• An alphanumeric data item that is subordinate to the data-name specified as the

record key or alternate record key of file-name, and whose leftmost character
position corresponds to the leftmost character position of the record key or alternate
record key (a partial key)

General Rules

1. file-name must be open in the INPUT or 1-0 mode at the time that the START statement
is executed.

2. If you do not specify the KEY phrase, the relational operator IS EQUAL TO and the
primary record key are the defaults.

3. The current record pointer is positioned to the first logical record in the file whose key
satisfies the comparison.

10-20 First Edition

Indexed Files

r

~

If no record in the file satisfies the comparison, or an optional input file is unavailable,
an INVALID KEY condition exists, the execution of the START statement is
unsuccessful, and the position of the current record pointer is undefined.

4. The execution of the START statement updates the value of any FILE STATUS data
item associated with file-name. File status is explained earlier in this chapter.

5. If you specify the KEY phrase, the comparison uses the data item referenced by data-
name.

6. Successful execution of the START statement establishes a key of reference, which is
used in subsequent Format 1 READ statements, as follows:

• If you do not specify the KEY phrase, the primary record key specified for file-name
becomes the key of reference.

• If you specify the KEY phrase, and you specify data-name as a record key for file
name, that record key becomes the key of reference.

7. START does not retrieve a record, but only positions the file to a specific record.
8. If execution of START is unsuccessful, the key of reference is undefined.
9. Transfer of control following the successful or unsuccessful execution of the START

operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the START statement. See the section Indexed File Concepts, earlier in this chapter,
for more information.

10. The END-START clause delimits the scope of the START statement. For more
information, see the section Scope Terminators, in Chapter 8.

START Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a START statement: 00, 23, 47, 99. For a complete discussion of
COBOL85 file status codes, see Chapter 4.

Example
In the following indexed file, each record contains a NAME field that serves as the primary
key and a COMPANY field:

r
r

data-name NAME COMPANY

Picture PIC X(10) PIC X(25)

Values BLYE REPORTCO
CLAPP MERGANTHALER
FIELDS SERVICE
GRIER AUTOMATION
HARPER DESIGNERS
KEANE REPORTCO

First Edition 10-21

COBOL85 Reference Guide

The following example shows source coding to describe the file:

ENVIRONMENT DIVISION.

SELECT FILE-1 ASSIGN TO MIDASPLUS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS NAME.

DATA DIVISION.
FILE SECTION.
FD FILE-1

VALUE OF FILE-ID IS 'FILE-1'.
01 FILE-1-RECORD.

05 NAME P IC X (10) .
05 COMPANY PIC X(25).

To display records of people whose names begin with the characters F, G, H, and I, program
actions must include a START statement to position the file to the first name beginning with
one of these letters, and a series of executions of sequential READ statements.
To position with the START statement, first initialize the key field (NAME), as in the next
example.

MOVE to NAME.

START FILE-1 KEY IS NOT LESS THAN NAME
INVALID KEY DISPLAY 'EOF'.

READ FILE-1 NEXT RECORD,
AT END DISPLAY 'EOF'

I n i t i a l i z e k e y fi e l d .

Find the first record
whose key is not less
than 'F'. This posi
t i o n s t h e fi l e t o
this record (FIELDS).

R e t r i e v e t h e fi r s t
record (FIELDS).

" >

~ >

PERFORM 120-READ-NEXT UNTIL NAME NOT
LESS THAN 'K'.

T h i s a c t i o n r e t r i e v e s
the records from
GRIER through KEANE,
and prints all except
KEANE.

120-READ-NEXT.

WRITE PRINT-LINE FROM FILE-1-RECORD.
READ FILE-1 NEXT RECORD
AT END DISPLAY 'EOF'.

10-22 First Edition

WRITE

r

r

Indexed Files

Releases a logical record for an output or input-output file.

Format
WRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

Syntax Rules
1. record-name and data-name-1 can name the same storage area.
2. record-name is the name of a logical record in the FILE SECTION of the DATA

DIVISION and can be qualified.
3. You must specify the INVALID KEY phrase if you do not specify an applicable USE

procedure for the associated file.

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode.
2. Prime Extension: After a successful WRITE, the information is still available in

record-name.
The logical record released by the WRITE statement is also available to the program as a
record of other files referenced in the same SAME RECORD AREA clause as the
associated output file.

3. Execution of the WRITE statement with the FROM phrase is equivalent to the statement

MOVE data-name-1 TO record-name

followed by a WRITE statement.
After execution of the WRITE statement is complete, the information in the area
referenced by data-name-1 is available.

4. If the number of character positions in the record is less than the minimum size or larger
than the maximum size allowed for the file, the WRITE statement is unsuccessful, and
an exception condition exists.

5. The execution of the WRITE statement updates the value of any FILE STATUS data
item associated with the file. File status is explained in the section Indexed File
Concepts, earlier in this chapter.

First Edition 10-23

COBOL85 Reference Guide

Example

Rules for Record Keys

1. MIDASPLUS stores the written record in such a way that you can use any record key to
access it.

2. The value of the primary record key must be unique within the records in the file.
Otherwise, an INVALID KEY condition occurs, and the WRITE statement is
unsuccessful. A status code of 22 is placed in the FILE STATUS field, if one exists.

3. The program must set the data item specified as the primary record key to the desired
value prior to the execution of the WRITE statement.

4. In sequential access mode, the program must write records in ascending order.
Otherwise, an INVALID KEY condition occurs, and the WRITE statement is
unsuccessful. A status code of 21 is placed in the FILE STATUS field, if one exists.

5. The value of any alternate record key must be unique unless you specify the WITH
DUPLICATES phrase. In this case, an informational status code 02 is placed in the FILE
STATUS data item, if one exists. The record is logically positioned last within the set of
duplicates. If you do not specify WITH DUPLICATES, the INVALID KEY condition
exists, and a status code of 22 is placed in the FILE STATUS field, if one exists.

6. Transfer of control following the successful or unsuccessful execution of the WRITE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the WRITE statement. See the section Indexed File Concepts, earlier in this chapter,
for more information.

7. The END-WRITE clause delimits the scope of the WRITE statement. For more
information, see the section Scope Terminators, in Chapter 8.

WRITE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a WRITE statement: 00, 02, 21, 22, 30, 44, 48, 99. For a complete
discussion of COBOL85 file status codes, see Chapter 4.

This sample program illustrates the use of the SAME RECORD AREA clause as well as
indexed concepts. Because TRANS-FILE and MASTER-FILE share the same record area, no
MOVE or WRITE FROM is necessary to add or delete a record from MASTER-FILE.

ID DIVISION.
PROGRAM-ID. RANDOM1.

* *
REMARKS. THIS PROGRAM ILLUSTRATES READ, WRITE, REWRITE, AND

DELETE IN RANDOM ACCESS MODE, AND CREATION OF AN INDEXED
FILE.

10-24 First Edition

"1

Indexed Files

IN ALL CASES, THE KEY IS IN MASTER-RECORD AS SOON AS
TRANS-FILE IS READ BECAUSE OF THE SAME AREA CLAUSE.
EXCEPT IN THE CASE OF AN UPDATE TRANSACTION,
NO MOVE OF ACCT-ENTRY TO ACCT-MS IS NECESSARY.

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.

*
FILE-CONTROL.

*
SELECT MASTER-FILE ASSIGN TO MIDASPLUS

ORGANIZATION IS INDEXED,
ACCESS MODE IS RANDOM,
RECORD KEY IS ACCT-MS
FILE STATUS IS FS-MS.

*
SELECT TRANS-FILE ASSIGN TO MIDASPLUS,

ORGANIZATION IS SEQUENTIAL,
FILE STATUS IS FS-TR.

SELECT NEW-FILE ASSIGN TO MIDASPLUS,
ORGANIZATION IS INDEXED,
ACCESS IS RANDOM,
RECORD KEY IS ACCT-NEW,
FILE STATUS IS FS-NEW.

*
SELECT PRINT-FILE ASSIGN TO PRINTER.

*
I-O-CONTROL.

SAME RECORD AREA FOR TRANS-FILE, MASTER-FILE.
* *
DATA DIVISION.
FILE SECTION.

*
FD MASTER-FILE,

VALUE OF FILE-ID IS KDISBURS,
RECORD CONTAINS 42,
DATA RECORD IS MASTER-RECORD.

01 MASTER-RECORD.
0 5 A C C T - M S P I C X (3) .
0 5 D A T E - M S P I C 9 (6) .
0 5 F I L L E R P I C X (3) .
0 5 V E N D O R - M S P I C X (2 0) .
0 5 C H E C K - M S P I C X (3) .
0 5 A M T - M S P I C 9 (7) .

First Edition 10-25

COBOL85 Reference Guide

FD TRANS-FILE COMPRESSED,
VALUE OF FILE-ID IS TRANSFL,
RECORD CONTAINS 43,
DATA RECORD IS TRANS-RECORD.

01 TRANS-RECORD.
05 TRANS-ENTRY.

10 ACCT-ENTRY
10 FILLER

05 ENTRY-CODE
k

FD NEW-FILE COMPRESSED,
VALUE OF FILE-ID IS NEWFILE,
RECORD CONTAINS 42,
DATA RECORD IS NEW-RECORD.

01 NEW-RECORD.
05 NEW-ENTRY.

10 ACCT-NEW
10 FILLER

05 NEW-CODE
k

FD PRINT-FILE,
LABEL RECORDS ARE OMITTED,
RECORD CONTAINS 42,
DATA RECORD IS PRINT-LINE.

01 PRINT-LINE

PIC X(3).
PIC X(39)
PIC X.

PIC X(3).
PIC X(38)
PIC X.

PIC X(42)

WORKING-STORAGE SECTION.
77 FS-NEW PIC XX VALUE ' 0 0
77 FS-MS PIC 9 9 VALUE 00.
77 FS-TR PIC XX VALUE ' 0 0
77 KDISBURS

VALUE 'KDISBURS
PIC

r
X(28)

77 NEWFILE
VALUE 'NEWFILE'

PIC X(27)

77 NO-MORE-INPUT PIC X VALUE ' N' .
77 PRINT-COUNT PIC 99 VALUE 00.
77 TRANSFL PIC X(28)

VALUE 'TRANSFL'
01 TRANS-RECORD-HOLD.

05 TRANS-ENTRY-HOLD.
10 ACCT-ENTRY-HOLD
10 FILLER

05 ENTRY-CODE-HOLD

PIC X(3).
PIC X(39)
PIC X.

* *
PROCEDURE DIVISION.
000-MAINLINE.

OPEN INPUT TRANS-FILE,
1-0 MASTER-FILE,
1-0 NEW-FILE,
OUTPUT PRINT-FILE.

10-26 First Edition

Indexed Files

PERFORM 010-PRINT-HEADINGS.
READ TRANS-FILE AT END

DISPLAY 'INPUT FILE IS EMPTY',
CLOSE TRANS-FILE, MASTER-FILE, NEW-FILE, PRINT-FILE,
STOP RUN.

PERFORM 020-PROCESS-TRANS UNTIL NO-MORE-INPUT = 'Y'.
CLOSE TRANS-FILE,

MASTER-FILE,
NEW-FILE,
PRINT-FILE.

STOP RUN.
*
010-PRINT-HEADINGS.

*NOT INCLUDED.
*
02 0-PROCESS-TRANS.

IF ENTRY-CODE = 'U' PERFORM 100-UPDATE
ELSE IF ENTRY-CODE = 'A' PERFORM 110-ADD

ELSE IF ENTRY-CODE = 'D' PERFORM 120-DELETE
ELSE PERFORM 200-CREATE-ERROR-FILE.

READ TRANS-FILE AT END
MOVE 'Y' TO NO-MORE-INPUT
DISPLAY 'END OF FILE',
IF PRINT-COUNT = 0 MOVE 'NO PRINT RECORDS' TO PRINT-LINE,

WRITE PRINT-LINE AFTER ADVANCING 2
END-IF.

*
10 0-UPDATE.

MOVE TRANS-RECORD TO TRANS-RECORD-HOLD.
READ MASTER-FILE INVALID KEY

MOVE 'N' TO ENTRY-CODE
PERFORM 200-CREATE-ERROR-FILE.

MOVE TRANS-RECORD-HOLD TO MASTER-RECORD.
REWRITE MASTER-RECORD INVALID KEY

DISPLAY 'INVALID REWRITE'.
*

110-ADD.
WRITE MASTER-RECORD INVALID KEY

MOVE 'D' TO ENTRY-CODE,
PERFORM 200-CREATE-ERROR-FILE.

*
120-DELETE.

DELETE MASTER-FILE RECORD, INVALID KEY
MOVE 'N' TO ENTRY-CODE,
PERFORM 200-CREATE-ERROR-FILE.

*
200-CREATE-ERROR-FILE.

* ERRONEOUS INPUT RECORDS ARE WRITTEN TO THE INDEXED
* NEW-FILE UNLESS A KEY IS DUPLICATED WITHIN NEW FILE.
* IN THAT CASE, THE ERROR RECORD IS PRINTED INSTEAD.

First Edition 10-27

COBOL85 Reference Guide

MOVE ENTRY-CODE TO NEW-CODE.
MOVE TRANS-ENTRY TO NEW-ENTRY.
WRITE NEW-RECORD, INVALID KEY

MOVE NEW-RECORD TO PRINT-LINE,
WRITE PRINT-LINE AFTER ADVANCING 1,
ADD 1 TO PRINT-COUNT.

To compile, link, and execute this file, stored as RANDOM.COBOL85, use the following
dialog:

OK, COBOL85 RANDOM -LISTING
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: RANDOM.COBOL85]

O K , B J N D , _ _ _ w
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
• LOAD RANDOM

LI COBOL85LIB
L I

BIND COMPLETE
: FILE
OK, RESUME RANDOM
END OF FILE
OK,

Input Files
The master file, KDISBURS, contains the following records before the program is run:

408080185 ASHTABULA HDWE 4300035476
409080185 CAIRO CHEMICAL 4360002746
410080285 ST.BOTOLPHSTOWN SUPP4200005108
411080285 DOVER MUTUAL 4100034166
4 1 2 0 8 0 3 8 5 PA R I S A U T O 4 1 0 0 0 1 5 0 0 0
413090385 ROME BOATING 4150017982
C82080785 ODESSA SERVICES 4100004670
4500B0785 ANTIOCH SERVALL 4300002580
580080785 BETHLEHEM TAXI RR00009840
681080785 ATHENS LUMBER 18500036BB

The transaction file, TRANSFL, contains the following records:

408111386 ASHTABULA HARDWARE 4300099999U
414061185 PRIME COMPUTER 4360000123A
410080285 ST.BOTOLPHSTOWN SUPP4200005108D
411080285 DOVER MUTUAL 4100034166

10-28 First Edition

Indexed Files

Output Files
The master file, KDISBURS, contains the following records after the program is run:

408111386 ASHTABULA HARDWARE 4300099999
409080185 CAIRO CHEMICAL 4360002746
411080285 DOVER MUTUAL 4100034166
4 1 2 0 8 0 3 8 5 PA R I S A U T O 4 1 0 0 0 1 5 0 0 0
413090385 ROME BOATING 4150017982
414061185 PRIME COMPUTER 4360000123
C82080785 ODESSA SERVICES 4100004670
4500B0785 ANTIOCH SERVALL 4300002580
580080785 BETHLEHEM TAXI RR00009840
681080785 ATHENS LUMBER 18500036BB

The PRINT-FILE contains the following message:

NO PRINT RECORDS

NEWFILE contains the following record:

4 11 0 8 0 2 8 5 D O V E R M U T U A L 4 1 0 0 0 3 4 1 6

For subsequent executions, enter

OK, RESUME RANDOM

First Edition 10-29

Relative Files

r

r

COBOL85 allows access to records of a disk file in either a random or a sequential manner.
Each record in a relative file is uniquely identified by its relative key, an integer value that
specifies the record's position in the file.
COBOL85 processes direct access (relative) files created with the MIDASPLUS or PRISAM
interface. The COBOL85 relative key corresponds to the MIDASPLUS direct access primary
index. The relative key is part of the MIDASPLUS record description but is not part of the
COBOL85 record description. The MIDASPLUS User's Guide discusses in detail how to
prepare files for COBOL85 access with MIDASPLUS. Throughout this chapter, references
are made to MIDASPLUS utilities. If you use PRISAM, see the PRISAM User's Guide for
information on creating relative files.
This chapter discusses relative file concepts, common operations on relative files, and
elements of the ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE
DIVISION as they pertain to relative file processing. The chapter concludes with an example.

Relative File Concepts
This section discusses the following relative file concepts:

• Organization
• Relative key
• Access modes
• File formats
• Current record pointer
• File status
• INVALID KEY condition
• NOT INVALID KEY condition
• AT END condition
• NOT AT END condition
• Exception conditions

First Edition 11-1

COBOL85 Reference Guide

Organization
Relative file organization is permitted only on disk. A relative file consists of records that are
identified by relative record numbers. Think of the file as a serial string or array of areas, each
capable of holding a logical record. A relative record number identifies each area. Records are
stored and retrieved based on this number. For example, in the representation of a relative file
in Figure 11-1, the tenth record is the one addressed by relative record number 10 and is in the
tenth record area, whether or not records arc written in record areas 1 through 9.

No. Record

1 JAN 40102

2 FEB 29800

3 MAR 45895

4

5

6

7

8

9 SEPT 7921

10 OCT 7580

11 NOV 8400

12 DEC 10298

Q10166-1L4.22-0 I'

FIGURE 11-1
A Relative File

In most cases, a file used as a relative file in a program must have a template created as a
direct access file with MIDASPLUS or PRISAM. Set the maximum number of records and
declare all fields when you create the file template; you cannot change file attributes merely
by changing their descriptions in the COBOL85 program.
In some cases, the COBOL85 program creates a relative file. See the OPEN statement for
details.

11-2 First Edition

Relative Files

Relative Key
The data item named in the RELATIVE KEY clause of the file-control-entry for a file
contains the current record number for that file. For inserting, updating, and deleting records
in a file, each record is identified solely by the value of its relative key. This value must,
therefore, be unique and must not be changed when updating the record. The RELATIVE
KEY data item is not part of the file's COBOL85 record description.

Access Modes
COBOL85 allows three access modes for relative files. Specify them in the SELECT clause
as follows:

• In sequential access mode, COBOL85 accesses records in ascending order of relative
key values.

• In random access mode, the program controls the sequence in which it accesses
records. To access a particular record the program places the record's relative record
number in the relative key data item.

• In dynamic access mode, you can change at will from sequential access to random
access for reading the file. The section Common Operations on Relative Files, later in
this chapter, discusses access mode requirements for each 1-0 statement.

File Formats
MIDASPLUS always uses fixed-length record formatting for relative files. PRISAM uses
variable-length and fixed-length record formatting for relative files. For variable-length
record formatting with relative files, all records are preallocated as maximum length records.
The template for the file must define the file's format consistent with the COBOL85 program
definition. For additional information, see the MIDASPLUS User's Guide and the PRISAM
User's Guide.

Note
Odd-length records contained in MIDASPLUS relative files contain an extra byte of data to fill
the record out to the word boundary. This extra byte of data is undefined. For PRISAM relative
files, odd-length records are padded in such a way that this extra byte is not visible to the user.

Current Record Pointer
The current record pointer is a conceptual entity used to indicate the next record to be
accessed within a given file. The concept of the current record pointer has no meaning for a
file opened in the output mode. Only the OPEN, START, and READ statements affect the
setting of the current record pointer.

File Status
Code a file status check in the program to determine the success or failure of an 1-0
operation. Then use the result of the file status check to control the next program action. If
you specify the FILE STATUS clause in a file-control-entry, C0B0L85 places a value into

First Edition 11-3

COBOL85 Reference Guide

1. A value is placed into the FILE STATUS data item, if you specify one for the file, to
indicate an AT END condition.

11-4 First Edition

the specified data item during the execution of a READ, WRITE, REWRITE, DELETE,
OPEN, CLOSE, or START statement to indicate the status of that input-output operation.
The section ENVIRONMENT DIVISION, later in this chapter, discusses the FILE STATUS
clause. For a complete discussion of COBOL85 file status codes, see Chapter 4.

The INVALID KEY Condition
The INVALID KEY condition can occur as a result of the execution of a START, READ,
WRITE, REWRITE, or DELETE statement. For details of the causes of the condition, see
the relevant statement.

When the INVALID KEY condition occurs, COBOL85 performs the following steps:

1. A value is placed into the FILE STATUS data item, if you specify one for the file, to
indicate an INVALID KEY condition.

2. If you specify the INVALID KEY phrase in the statement causing the condition,
control is transferred to the INVALID KEY imperative statement. Any USE procedure
that you specify for the file is not executed. After the execution of the INVALID KEY
imperative statement, control is transferred to the end of the 1-0 statement and the NOT
INVALID KEY phrase, if you specify one, is ignored.

3. If you do not specify the INVALID KEY phrase for the file, but you specify a USE
procedure, either explicitly or implicitly, that procedure is executed.

When the INVALID KEY condition occurs, execution of the input-output statement that
caused the condition is unsuccessful and the file is not affected.

The NOT INVALID KEY Condition
If the 1-0 operation is successful, COBOL85 performs the following steps:

1. The FILE STATUS data item, if you specify one, is updated to indicate a successful
completion.

2. If you specify the NOT INVALID KEY phrase, control is transferred to the imperative
statement associated with the NOT INVALID KEY phrase. After the execution of this
imperative statement, control is transferred to the end of the 1-0 statement and the
INVALID KEY phrase, if you specify one, is ignored.

3. If you do not specify the NOT INVALID KEY phrase, control is transferred to the end
of the 1-0 statement and the INVALID KEY phrase, if you specify one, is ignored.

The AT END Condition
The AT END condition can occur as a result of a sequential READ statement when no next
logical record exists in the file. When the AT END condition occurs, C0B0L85 performs the
following steps:

Relative Files

2. If you specify the AT END phrase in the statement causing the condition, control is
transferred to the AT END imperative statement. Any USE procedure that you specify
for the file is not executed. After the execution of the AT END imperative statement,
control is transferred to the end of the 1-0 statement and the NOT AT END phrase, if
you specify one, is ignored.

3. If you do not specify the AT END phrase for the file, but you specify a USE
procedure, either explicitly or implicitly, that procedure is executed.

The NOT AT END Condition
The NOT AT END condition can occur as a result of a successfully completed sequential
READ statement. When the NOT AT END condition occurs, COBOL85 performs the
following steps:

1. The FILE STATUS data item, if you specify one, is updated to indicate a successful
completion.

2. If you specify the NOT AT END phrase, control is transferred to the imperative
statement associated with the NOT AT END phrase. After the execution of the NOT
AT END imperative statement, control is transferred to the end of the 1-0 statement
and the AT END phrase, if you specify one, is ignored.

3. If you do not specify the NOT AT END phrase, control is transferred to the end of the
1-0 statement and the AT END phrase, if you specify one, is ignored.

Exception Conditions
Exception conditions can occur as a result of a Permanent Error condition or a Logic Error
condition. (See Chapter 4.) When an exception condition that is not an INVALID KEY or
AT END condition occurs, C0B0L85 performs the following steps:

1. A value is placed into the FILE STATUS data item, if you specify one for the file, to
indicate the exception condition.

2. If you specify a USE procedure for the file, that procedure is executed. Any INVALID
KEY, NOT INVALID KEY, AT END, NOT AT END phrases are ignored.

3. Program execution terminates.

Common Operations on Relative Files
This section discusses the following common operations on relative files:

• Creating a file
• Creating (adding) records
• Positioning the file to a certain record
• Reading a certain record
• Deleting a certain record
• Updating (changing) a certain record
• Handling errors

First Edition 11-5

COBOL85 Reference Guide

The concept of the relative key is essential for most of the following operations on relative
files, because only the keys allow access to the data records themselves.

Creating a File
To create a MIDASPLUS file, use the MIDASPLUS CREATK command to create a direct
access file template. Then build a file on that template either with the MIDASPLUS
KBUILD command and an existing data file, or with a COBOL85 program. In some cases,
the COBOL85 program creates a relative file. See the OPEN statement for details.

The COBOL85 program must describe the new file's organization as RELATIVE, and open
it in one of the three access modes discussed earlier.

For more information on using CREATK and KBUILD, see the MIDASPLUS User's Guide.

For information on creating PRISAM files, see the PRISAM User's Guide.

Creating (Adding) Records
Use WRITE to add new records. In sequential access mode, COBOL85 writes records in
ascending order regardless of any value in the key field. In random or dynamic access mode,
you must place a unique value in the relative key field before writing each record. In random
or dynamic access mode, you can write records in any order and insert them anywhere in an
existing file.

Positioning the File to a Certain Record
In sequential or dynamic access mode, use START to position the file if you do not want to
access the first record. If you want to sequentially read groups of records within the file, use
additional START statements.

In random access mode, you must place the position of the record lo be READ into the data-
name in the KEY IS phrase. Do not use START in random access mode.

Reading a Certain Record
If you open a file in sequential access mode, no special operations other than READ arc
necessary to read from the start of the file in sequential order of the key. If you do not want
to read the first record, precede the first READ by a START to specify the key of the first
record you want to read. All subsequent READs access each next record in key order until
the program executes another START or closes the file, or an error occurs.

In random access mode, you must specify a key before each READ by moving a value into
the KEY field or by using the START verb.
If you want to access the file both sequentially and randomly, specify dynamic access mode.
To change from random to sequential reading, use a series of Formal 1 READs (READ
NEXT).

11-6 First Edition

Relative Files

Deleting a Certain Record
Use the DELETE statement to delete records. In all access modes, place the proper value in
the key field before using DELETE. In sequential access mode, first read the record to be
deleted; then use the DELETE verb.

Updating (Changing) a Certain Record
Use the REWRITE statement to update records. The file must be open in 1-0 mode. In all
access modes, place the proper value in the key field before using REWRITE. In sequential
access mode, first read the record to be rewritten; then use the REWRITE verb.

Handling Errors in All of These Statements
The INVALID KEY clause and the USE statement in the declaratives section provide error
handling. One of these elements is required for each 1-0 statement. Use the AT END phrase
only for a sequential READ. Use USE statements in the declaratives section to provide error
handling for non-end-of-file errors for a sequential READ, and for non-invalid-key errors.

ENVIRONMENT DIVISION
This section contains information that is unique to relative files. Chapter 6 contains
information that applies to all file organizations. Chapters 10 and 12 contain information that
applies to indexed files and sequential tape files, respectively.

~

r
r First Edition 11-7

1. The SELECT clause specifics the name of the relative file. You must specify the
SELECT clause first in the file-control-entry. The remaining clauses can appear in any
order. C0B0L85 manages all relative files with cither the MIDASPLUS interface or the
PRISAM interface. Use ASSIGN TO MIDASPLUS to access MIDASPLUS files or
ASSIGN TO PRISAM lo access PRISAM files. You can also specify ASSIGN TO
PFMS for compatibility with previous Prime COBOL compilers, but access is not as
efficient.

2. The ORGANIZATION IS RELATIVE clause specifics that die file named in the
SELECT clause contains data organized by relative keys. You establish file organization
at ihe time you create the file, and you cannot subsequently change it.

3. The ACCESS MODE clause specifics the manner in which the program is to read or
write to a relative file. If you omit this clause, the default is sequential access. The three
access modes are described below:

• When you specify SEQUENTIAL, COBOL85 writes and retrieves records in the
order of ascending record number.

• When you specify RANDOM, COBOL85 writes and retrieves records randomly,
based on the value placed in the RELATIVE KEY field prior to a READ or WRITE.
Random mode precludes a sequential READ NEXT.

COBOL85 Reference Guide

INPUT-OUTPUT SECTION — FILE-CONTROL
Use the INPUT-OUTPUT SECTION to specify peripheral devices and information needed to
transmit and handle data between the devices and the program.

Use the FILE-CONTROL paragraph to name each file and lo specify other file-related
information. Each file requires one file-control-entry.

Format
SELECT [OPTIONAL] file-name-1

ASSIGN TO Sf^name-\
[^literal-1 J

[R E S E R V E t a * * , r . / [^]] - ^

[ORGANIZATION IS] RELATIVE

SEQUENTIAL [, RELATIVE KEY IS data-name-1]
ACCESS MODECS< f

I DYNAMIC f" ' RELATIVK KEY IS data-name-1

[FILE STATUS IS data-name-2].

General Rules

11-8 First Edition

- >

Relative Files

• When you specify DYNAMIC, a program can read randomly or sequentially, and
you can use the START statement. Oilier operations follow the rules for random
access.

4. The RELATIVE KEY clause specifics the data item used to communicate a relative
record number between the COBOL85 program and the file management system. You
need not specify RELATIVE KEY for sequential access.

• Do not define data-name-1 in the record description associated with file-name.
Rather, define it in the WORKING-STORAGE or LINKAGE SECTION. It must
refer to an unsigned integer.

• If the file-description-entry specifies EXTERNAL, the relative key is also
EXTERNAL; therefore, do not define it in the LINKAGE SECTION.

• Do not specify data-name-1 with an OCCURS clause, or include it within a group
subordinate to an OCCURS clause. This means it must not be subscripted or indexed,
but it can be qualified.

• Do not specify data-name-1 with a P character or a separate sign in its PICTURE
clause.

5. All records stored in a relative file are uniquely identified by relative record numbers.
The relative record number of a given record specifics the record's logical ordinal
position in the file. The first logical record has a relative record number of 1, and
subsequent logical records have relative record numbers of 2, 3, 4, and so on.

6. In the FILE STATUS clause, data-name-2 must be a two-character field described in the
DATA DIVISION. The file control system moves a value into data-name-2 following
the execution of every statemenl that explicitly or implicitly references the file. This
value indicates the execution status of the statement to the program. Following a
successful 1-0 operation, data-name-3 contains '00'. For a complete discussion of
COBOL85 file status codes, sec Chapter 4.
The FILE STATUS data item (data-name-2) must not be part of the record description
for its file. It must be in the WORKING-STORAGE or LINKAGE SECTION. It can be
qualified but must not be subscripted or indexed.
If the file-description-entry specifics EXTERNAL, the FILE STATUS item (data-
name-2) is also EXTERNAL; therefore, do not define it in the LINKAGE SECTION.
Prime Extension: data-name-2 can be cither alphanumeric or numeric (PIC XX or PIC
99).

DATA DIVISION

-

r

The elements of the DATA DIVISION for relative files are the same as those described in
Chapter 7 except for the record-description-entry and the relative key.

record-description-en try
COBOL85 record lengths and MIDASPLUS or PRISAM record lengths must be the same.

First Edition 11-9

COBOL85 Reference Guide

Relative Key
The relative key data item must not be part of the record description for its file. See the
section INPUT-OUTPUT SECTION — FILE-CONTROL, earlier in this chapter, for a
discussion.

PROCEDURE DIVISION

CLOSE

This section contains information that pertains to relative files. Chapter 8 contains
information that applies to all file organizations. Chapters 9, 10, and 12 contain information
that pertains to sequential disk files, indexed files, and sequential tape files, respectively.

Terminates the processing of files.

Format
CLOSE file-name-1 [, file-name-2]

Syntax Rule
The files named in the CLOSE statement need not all have the same organization or access.

General Rules

1. Once a program executes a CLOSE statement for a file, it must execute an OPEN
statement for that file before executing any other statements for that file.

2. A program can execute a CLOSE statement only for a file that is open. If a CLOSE
statement is attempted on a file that is not open, the file status data item, if you specify
one, is set to indicate status code 42. After execution of any applicable declarative
procedure, the program terminates. For this particular error, the only applicable
declarative procedure is a procedure for file-name.

3. If any other error occurs during a CLOSE operation, the file status data item, if you
specify one, is updated to indicate status code 30. Execution continues according to the
mles specified in Chapter 4.

11-10 First Edition

" >

^

Relative Files

DELETE
Removes a record from a disk file.

Format
DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

Syntax Rules
1. Do not specify the INVALID KEY and the NOT INVALID KEY phrases for a

DELETE statement that references a file that is in sequential access mode.
2. You must specify the INVALID KEY phrase for a DELETE statement on a file open in

random or dynamic access mode and for which you specify no USE procedure.

General Rules

1. The DELETE statement logically removes a data record from the file. The file must be
open in 1-0 mode. Execution of DELETE updates the value of the FILE STATUS data
item, if you specify one. It does not affect the contents of the record area associated with
file-name.

2. Transfer of control following the successful or unsuccessful execution of the DELETE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the file. See the section Relative File Concepts, earlier in this chapter, for more
information.

3. The END-DELETE clause delimits the scope of the DELETE statement. For more
information, see the section Scope Terminators, in Chapter 8.

Rules for Sequential Access

1. In sequential access, the program must successfully read the record to be deleted before
it can delete it. Otherwise, an exception condition occurs, and the DELETE statement is
unsuccessful. A status code of 43 is placed in the FILE STATUS field, if you specify
one. Exception conditions and file status are discussed in the section Relative File
Concepts, earlier in this chapter.

2. You must not change the RELATIVE KEY between the READ and DELETE
statements.

r
r First Edition 11-11

COBOL85 Reference Guide

OPEN

Rules for Random and Dynamic Access

1. Random and dynamic access modes do not require that you first read the record.
COBOL85 uses the current key value to select the record to delete.

2. If that record does not exist in the file, the INVALID KEY statement is executed, and a
status code of 23 is placed in the FILE STATUS field, if one exists. INVALID KEY and
FILE STATUS are discussed in the section Relative File Concepts, earlier in this
chapter.

DELETE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a DELETE statement: 00, 23, 43, 49, 99. For a complete discussion of
COBOL85 file status codes, see Chapter 4.

Initiates the processing of files and performs other input-output operations.

Format

{INPUT file-name-1 [, file-name-2] • • -^)OUTPUT file-name-3 [, file-name-4]

General Rules

1. A file opened as INPUT can be accessed only in a READ or START statement.
2. A file opened as OUTPUT can be accessed only in a WRITE statement.
3. A file opened as 1-0 can be accessed by a READ, WRITE, REWRITE, START, or

DELETE statement.

Note
You cannot use all 1-0 statements in all access modes. Table B-8 in Appendix B specifies
the types of 1-0 statements permissible with the different access modes.

4. Following the initial execution of an OPEN statement for a file, the program must close
the file before it can open the file again.

5. Execution of the OPEN statement does not obtain or release the first data record.
However, for files opened in INPUT or 1-0 mode, the OPEN statement positions the file
to the first record.

6. The file-description-entry for an opened file must be equivalent to the file's template
created by the FAU or CREATK utility.

11-12 First Edition

" >

< OUTPUT f i le-name-3 [, f i le-name-4] . • • V • • • ""
Ll-0 file-name-5 [, file-name-6] • • • J

Relative Files

1. For PRISAM files opened in OUTPUT mode or an OPTIONAL file opened in 1-0
mode, OPEN does not create a relative file. It merely opens an existing file for writing.
You must create the file template with the PRISAM FAU utility. If the file is not
present, the OPEN does not occur. A status code of 37 is returned, declaratives are
invoked, if present, and the program terminates.

8. For MIDASPLUS and PFMS files opened in OUTPUT mode or an OPTIONAL file
opened in 1-0 mode, if the file is not present, OPEN creates the file. COBOL85 builds a
template using runtime calls to CREATK and using information in the program to
describe the file to MIDASPLUS. For relative files, COBOL85 cannot determine from
any information in the program the number of records to allocate. Therefore, the number
defaults to 500. Use CREATK with the DATA function to change this number.

9. For MIDASPLUS and PRISAM files opened in OUTPUT mode, if the file is present
and contains data, the OPEN statement is unsuccessful and a status code of 37 is
returned. An exception condition occurs and the FILE STATUS field is updated, if one
exists. Exception conditions and file status are discussed in the section Relative File
Concepts, earlier in this chapter.

10. If any system error occurs during the OPEN processing, a status code of 30 is returned.
An exception condition occurs and the FILE STATUS field is updated, if one exists.
Exception conditions and file status are discussed in the section Relative File Concepts,
earlier in this chapter.

11. During the execution of the OPEN statement, COBOL85 checks file attributes against
the attributes described for the file in the program. These attributes are organization,
relative key, minimum and maximum logical record sizes, and the record type (fixed or
variable, MIDASPLUS or PRISAM).
If any of these attributes conflict, the OPEN statement is unsuccessful, and a status code
of 39 is returned. An exception condition occurs, and the FILE STATUS field is
updated, if one exists. Exception conditions and file status are discussed in the section
Relative File Concepts, earlier in this chapter.

12. If the SELECT statement associated with the file specifies MIDASPLUS as the assigned
device, MIDASPLUS is used to open the file. If the SELECT statement associated with
the file specifies PRISAM as the assigned device, PRISAM is used to open the file. If
the SELECT statement associated with the file specifies PFMS as the assigned device,
an internal check is made to see if the file is a MIDASPLUS or a PRISAM file. All
subsequent 1-0 operations are performed using the appropriate data management
interface.

13. If an unavailable optional file is opened with the INPUT phrase, the OPEN statement
sets the current record pointer to indicate the AT END condition. The OPEN statement is
successful. The FILE STATUS data item is set to the informational status code 05.

OPEN Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of an OPEN statement: 00, 05, 07, 30, 35, 37, 39, 41, 99. For a complete
discussion of COBOL85 file status codes, see Chapter 4.

First Edition 11-13

COBOL85 Reference Guide

READ
For sequential access, makes available the next logical record from a file. For random access,
makes available a record with a specific key value.

Format 1 (Sequential or Dynamic)
READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[N O T AT E N D i m p e r a t i v e - s t a t e m e n t - 2] I .

[END-READ]

Format 2 (Random or Dynamic)
READ file-name RECORD [INTO data-name-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

General Rules

1. Do not use the INTO phrase when the input file contains logical records of various sizes
as indicated by their record descriptions.

2. You must specify the INVALID KEY phrase (Format 2) or the AT END phrase (Format
1) if you do not specify an applicable USE procedure for file-name.

3. The associated file must be open in the INPUT or 1-0 mode at the time this statement is
executed.

4. The execution of the READ statement updates the value of any FILE STATUS data item
associated with file-name. File status is discussed in the section Relative File Concepts,
earlier in this chapter.

5. If you specify the INTO phrase, the record being read is moved from the record area to
data-name-1 according to the mles specified for the MOVE statement without the
CORRESPONDING phrase. The implied MOVE does not occur if the execution of the
READ statement is unsuccessful. Any subscripting or indexing associated with data-
name-1 is evaluated after the record is read and immediately before it is moved to the
data item.
When you use the INTO phrase, the record being read is available in both the input
record area and data-name-1.

6. For variable-length records, the following rules apply:

• If the number of character positions in the record that is read is less than the
minimum size specified in the record-description-entry, the portion of the record area
to the right of the last valid character read is undefined.

11-14 First Edition

Relative Files

• If the number of character positions in the record that is read is greater than the
maximum size specified in the record-description-entry, the record is truncated on
the right to the maximum size.

In either of these cases, the READ statement is successful, and the FILE STATUS data
item, if you specify one, is set to 04 to indicate a record length conflict.

7. Following the unsuccessful execution of any READ statement, the contents of the
associated record area and the position of the current record pointer are undefined.

8. Transfer of control following the successful or unsuccessful execution of the READ
operation depends on the presence or absence of the optional INVALID KEY, NOT
INVALID KEY, AT END, and NOT AT END phrases, and on the presence or absence
of USE procedures associated with the READ statement. See the section Relative File
Concepts, earlier in this chapter, for more information.

9. The END-READ clause delimits the scope of the READ statement. For more
information, see the section Scope Terminators, in Chapter 8.

Rules for Format 1 (Sequential and Dynamic Access)

1. Use Format 1 for all files in sequential access mode. The NEXT phrase is optional and
has no effect for sequential access.

2. The NEXT phrase is required for files in dynamic access mode, when you want to
retrieve records sequentially. If you do not use NEXT, you must place the relative record
number of the record to be retrieved in the key field.

3. The record made available by a Format 1 READ statement is determined as follows:

• If the current record pointer was positioned by the START or OPEN statement, the
record to which it points is made available, provided that it is still accessible. If the
record is no longer accessible, perhaps because the record is deleted, the current
record pointer is updated to point to the next existing record. That record is then
made available.

• If the current record pointer was positioned by the execution of a previous READ
statement, the current record pointer is updated to point to the next existing record in
the file. Then that record is made available.

• For a relative file in the dynamic access mode, the execution of an OPEN 1-0
statement followed by one or more WRITE statements and then a READ NEXT
statement causes the READ NEXT statement to access the first record in the file.
However, if the WRITE statement inserted records with a key value lower than that
of any records previously existing in the file, these records are returned by the first
READ NEXT statement.

4. If, at the time of execution of a Format 1 READ statement, the position of the current
record pointer for that file is undefined, the execution of that READ statement is
unsuccessful. The FILE STATUS data item, if you specify one, is set to 46, and an
exception condition occurs.

5. If, at the time of the execution of a Format 1 READ statement, no next logical record
exists in the file, an optional input file is unavailable, or the relative record number is
larger than the relative key data item, the AT END condition occurs, and the execution
of the READ statement is unsuccessful.

First Edition 11-15

COBOL85 Reference Guide

11-16 First Edition

" >

6. When the AT END condition occurs, COBOL85 performs the following steps:

a. A value is placed into the FILE STATUS data item, if you specify one for the file,
to indicate an AT END condition.

b. If you specify the AT END phrase, control is transferred to the associated
imperative statement. Any USE procedure you specify for this file is not executed.

c. If you do not specify the AT END phrase, then the USE procedure you specify for
this file is executed. Otherwise, execution is aborted.

7. When the AT END condition occurs, the program must not execute a Format 1 READ
statement for that file without first executing one of the following:

• A successful CLOSE statement followed by the execution of a successful OPEN
statement for that file

• A successful START statement for that file
• A successful Format 2 READ statement for that file

8. If an AT END condition does not occur during the execution of a READ statement and
the READ statement is successful, the AT END phrase, if you specify one, is ignored,
and the following actions occur:

• The current record pointer is set and the FILE STATUS data item, if you specify one
for this file, is updated.

• The record is made available in the record area and any implicit move resulting from
the presence of an INTO phrase is executed. Control is transferred to the end of the
READ statement or to the imperative-statement specified by the NOT AT END
phrase, if you specify one for the file.

9. If an exception condition that is not an AT END condition exists, the FILE STATUS item
is updated and control is transferred according to the mles for the USE statement.

10. In dynamic access mode, a Format 1 READ NEXT statement retrieves the next logical
record from the file as described in General Rule 3 for Format 1.

11. If you specify the RELATIVE KEY phrase, the execution of a Format 1 READ
statement updates the contents of the RELATIVE KEY data item with the relative record
number of the record made available.

12. If the number of significant digits in the relative record number to be read is larger than
the size of the relative key data item, the READ statement is unsuccessful, and the AT
END condition occurs. The FILE STATUS data item, if you specify one, is updated to
status code 14.

13. For a Format 1 READ statement, include a USE procedure in the program to handle any
non-end-of-filc errors that may occur. This action may be necessary to handle errors that
may occur when multiple users are accessing a MIDASPLUS or PRISAM file that has
been opened in 1-0 mode. This USE procedure also handles other unexpected conditions
that may be generated during sequential file access.

Relative Files

Rules for Format 2 (Random and Dynamic Access)

1. Use Format 2 for files in random access mode or for files in dynamic access mode when
you want to retrieve records randomly.

2. If an optional input file is unavailable, the INVALID KEY condition exists and the
READ statement is unsuccessful.

3. Execution of a Format 2 READ statement compares the value of the relative key with
the relative position of the stored records in the file, until the record having the
corresponding record number is found. The current record pointer is positioned to this
record, which is then made available. If no record can be so identified, the INVALID
KEY condition exists and execution of the READ statement is unsuccessful.

READ Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a READ statement: 00, 02, 04, 10, 14, 23, 30, 46, 47, 90, 97, 99. For a
complete discussion of COBOL85 file status codes, see Chapter 4.

REWRITE
Logically replaces a record on a disk file.

Format
REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

Syntax Rules
1. The record-name is the name of a logical record in the FILE SECTION of the DATA

DIVISION and can be qualified.
2. In random or dynamic access mode, you must specify the INVALID KEY phrase in the

REWRITE statement for files for which you do not specify an appropriate USE
procedure.

3. Do not specify the INVALID KEY and the NOT INVALID KEY phrases for a
REWRITE statement that references a file that is in sequential access mode.

General Rules

1. The REWRITE statement can change all data fields in the record.
2. The file must be opened for 1-0 for all access methods.

First Edition 11-17

COBOL85 Reference Guide

3. In sequential access mode, the program must successfully read a record prior to the
REWRITE statement.

4. For a file accessed in either random or dynamic access mode, REWRITE replaces the
record specified by the contents of the RELATIVE KEY data item. If the file does not
contain the record specified by the key, the INVALID KEY condition exists, the
updating operation does not take place, and the data in the record area is unaffected.

5. The REWRITE statement does not affect the current file position.
6. The FROM option allows you to create the record in another area. It is equivalent to

MOVE data-name TO record-name

prior to the execution of the REWRITE statement.
7. The number of character positions in the record referenced by record-name must be

equal to the number of character positions in the record being replaced.
8. Prime Extension: The logical record released by a successful execution of the

REWRITE statement is still available in the record area.
If you name the associated file in a SAME RECORD AREA clause, the logical record is
also available to the program as a record of other files appearing in the same clause.

9. The execution of the REWRITE statement updates the value of any FILE STATUS data
item associated with the file. File status is explained in the section Relative File
Concepts, earlier in this chapter.

10. Transfer of control following the successful or unsuccessful execution of the REWRITE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the REWRITE statement. See the section Relative File Concepts, earlier in this
chapter, for more information.

11. The END-REWRITE clause delimits the scope of the REWRITE statement. For more
information, see the section Scope Terminators, in Chapter 8.

REWRITE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a REWRITE statement: 00, 22, 30, 43, 44, 49, 99. For a complete
discussion of COBOL85 file status codes, see Chapter 4.

SEEK — Prime Extension
Is supported syntactically only for compatibility with other COBOL implementations.

Format
SEEK file-name RECORD

11-18 First Edition

START

Relative Files

General Rules

1. SEEK is treated as documentation in COBOL85.
2. You must define the file-name in a file-description-entry in the DATA DIVISION.

Establishes a position in the file for subsequent READs.

r
Format

START file-name KEY IS <

f NOT LESS THAN OR EQUAL TO ^
NOT <=
GREATER THAN OR EQUAL TO
>=
EQUALTO

GREATER THAN

NOT LESS THAN
NOT<

> data-name

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-START]

r Syntax Rules
1. The file-name must be the name of a relative file with sequential or dynamic access.
2. The data-name can be qualified but not indexed or subscripted.
3. You must specify the INVALID KEY phrase if you do not specify an applicable USE

procedure for file-name.
4. The data-name, if you use it, must be the name in the RELATIVE KEY clause for this

file.

r
r

General Rules

1. The file-name must be open in the INPUT or 1-0 mode when the START statement is
executed.

2. If you do not specify the KEY phrase, the relational operator IS EQUAL TO is the
default.

3. The current record pointer is positioned to the first logical record in the file whose key
satisfies the comparison.

First Edition 11-19

COBOL85 Reference Guide

WRITE

If no record in the file satisfies the comparison, or an optional input file is unavailable,
an INVALID KEY condition exists, the execution of the START statement is
unsuccessful, and the position of the current record pointer is undefined.

4. The execution of the START statement updates the value of any FILE STATUS data
item associated with file-name. File status is explained earlier in this chapter.

5. Whether or not you specify the KEY phrase, the comparison uses the data item
referenced by the RELATIVE KEY data-name.

6. START does not retrieve a record, but only positions the file to a specific record.
7. Transfer of control following the successful or unsuccessful execution of the START

operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the START statement. See the section Relative File Concepts, earlier in this chapter,
for more information.

8. The END-START clause delimits the scope of the START statement. For more
information, see the section Scope Terminators, in Chapter 8.

START Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a START statement: 00, 23, 47, 99. For a complete discussion of
COBOL85 file status codes, see Chapter 4.

Releases a logical record for an output file.

Format
WRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

Syntax Rules
1. The record-name and data-name-1 can name the same storage area.
2. The record-name is the name of a logical record in the FILE SECTION of the DATA

DIVISION and can be qualified.
3. You must specify the INVALID KEY phrase if you do not specify an applicable USE

procedure for the associated file.

11-20 First Edition

Relative Files

General Rules

1. The associated file must be open in the OUTPUT or 1-0 mode.
2. Prime Extension: The logical record released by the WRITE statement is still available

in the record area.
If you name the associated file in a SAME RECORD AREA clause, the logical record is
also available as a record of other files referenced in the clause.

3. Execution of the WRITE statement with the FROM phrase is equivalent to the statement

MOVE data-name-1 TO record-name

followed by a WRITE statement.
4. If the number of character positions in the record is less than the minimum size or larger

than the maximum size allowed for the file, the WRITE statement is unsuccessful, and
an exception condition exists.

5. The execution of the WRITE statement updates the value of any FILE STATUS data
item associated with the file. File status is explained in the section Relative File
Concepts, earlier in this chapter.

Rules for Record Keys

1. When you open a file in output mode, you can insert records into the file in one of the
following ways:
• In sequential access mode, the WRITE statement releases a record. The first record is

given a relative record number of 1. Records released subsequently are given relative
record numbers of 2, 3, 4, and so on. If you specify the RELATIVE KEY data item
in the file-control-entry for the associated file, COBOL85 places the relative record
number of the record just released into the RELATIVE KEY data item.

• In random or dynamic access mode, prior to the execution of the WRITE statement,
you must initialize the value of the RELATIVE KEY data item with the relative
record number. That record is then released.

2. The INVALID KEY condition exists under any of the following circumstances:

• The access mode is random or dynamic, and the RELATIVE KEY data item
specifies a record that already exists.

• The program attempts to write beyond the externally defined boundaries of the file
when, for example, the relative key value is larger than the number of records
allocated by MIDASPLUS for that file.

• The program attempts a sequential WRITE statement, and the number of significant
digits in the relative record number is larger than the size of the relative key data
item.

First Edition 11-21

COBOL85 Reference Guide

3. Transfer of control following the successful or unsuccessful execution of the WRITE
operation depends on the presence or absence of the optional INVALID KEY and NOT
INVALID KEY phrases, and on the presence or absence of USE procedures associated
with the WRITE statement. See the section Relative File Concepts, earlier in this chapter,
for more information.

4. The END-WRITE clause delimits the scope of the WRITE statement. For more
information, see the section Scope Terminators, in Chapter 8.

WRITE Status Codes
One of the following status codes is placed in the FILE STATUS data item, if one exists, at
the completion of a WRITE statement: 00, 22, 24, 30, 48, 99. For a complete discussion of
COBOL85 file status codes, see Chapter 4.

Example
This program illustrates operations on a relative file in random access mode.

ID DIVISION.
PROGRAM-ID. RANDOM2.

* *
REMARKS. THIS PROGRAM ILLUSTRATES READ, WRITE, REWRITE, AND

DELETE FOR A RELATIVE FILE IN RANDOM ACCESS MODE. IT READS A
TRANSACTION FILE CONTAINING UPDATES FOR MONTHLY BUDGETS,
AND UPDATES A MONTH-FILE WHOSE RELATIVE KEY IS THE NUMBER
OF THE MONTH.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.

*
FILE-CONTROL.

*
SELECT MASTER-FILE ASSIGN TO MIDASPLUS

ORGANIZATION IS RELATIVE,
ACCESS MODE IS RANDOM,
RELATIVE KEY IS KEY-MS
FILE STATUS IS FS-MS.

*
SELECT TRANS-FILE ASSIGN TO PRIMOS,

ORGANIZATION IS SEQUENTIAL,
FILE STATUS IS FS-TR.

*
SELECT PRINT-FILE ASSIGN TO PRINTER.

* *
DATA DIVISION.
FILE SECTION.

*
FD MASTER-FILE,

VALUE OF FILE-ID IS KMONTHF.

11-22 First Edition

Relative Files

WORKING-STORAGE SECTION.
77 FS-MS
77 FS-TR
77 KEY-MS
77 NO-MORE--INPUT
77 KMONTHF
77 TMONTHF

01 MASTER-RECORD.
0 5 M A S T E R - K E Y P I C X X .
0 5 I N F O R M A T I O N P I C X (3 0)
0 5 F I L L E R P I C X (6) .

*
FD TRANS-FILE COMPRESSED

VALUE OF FILE-ID IS TMONTHF.
01 TRANS-RECORD.

0 5 T R A N S - C O D E P I C X .
0 5 T R A N S - E N T R Y P I C X (3 0) .
0 5 K E Y - C O D E P I C 9 9 .

*
FD PRINT-FILE,

LABEL RECORDS ARE OMITTED.
0 1 P R I N T - L I N E P I C X (3 3) .

PIC XX VALUE '00'.
PIC XX VALUE '00'.
PIC 99 VALUE ZEROES.
PIC X VALUE 'N'.
PIC X(30) VALUE 'KMONTH'.
PIC X(30) VALUE 'TMONTH'.

* *
PROCEDURE DIVISION.

*
DECLARATIVES.
INPUT-ERROR SECTION. USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
FIRST-PARAGRAPH.

DISPLAY '**ERROR: **'.
EXHIBIT FS-MS, FS-TR.
CLOSE TRANS-FILE, MASTER-FILE, PRINT-FILE.
STOP RUN.

OUTPUT-ERROR SECTION. USE AFTER STANDARD ERROR PROCEDURE
ON OUTPUT.

SECOND-PARAGRAPH.
DISPLAY '**ERROR: **'.
EXHIBIT FS-MS, FS-TR.
CLOSE TRANS-FILE, MASTER-FILE, PRINT-FILE.
STOP RUN.

END DECLARATIVES.
000-MAINLINE.

READY TRACE.
PERFORM 005-ACCEPT-FILE-NAMES.
OPEN INPUT TRANS-FILE,

1-0 MASTER-FILE,
OUTPUT PRINT-FILE.

PERFORM 010-UPDATE-MONTHLY-BUDGETS.
CLOSE TRANS-FILE, MASTER-FILE, PRINT-FILE.
STOP RUN.

*
005-ACCEPT-FILE-NAMES.

DISPLAY 'ENTER MASTER-FILE — KMONTH OR OTHER'.
ACCEPT KMONTHF.
DISPLAY 'ENTER TRANSACTION FILE — TMONTH OR OTHER'.
ACCEPT TMONTHF.

First Edition 11-23

COBOL85 Reference Guide

*
010-UPDATE-MONTHLY-BUDGETS.

READ TRANS-FILE AT END
DISPLAY 'INPUT FILE IS EMPTY',
CLOSE TRANS-FILE, MASTER-FILE, PRINT-FILE,
STOP RUN.

PERFORM 020-PROCESS-TRANS UNTIL NO-MORE-INPUT = 'Y'.
*
020-PROCESS-TRANS.

MOVE KEY-CODE TO KEY-MS.
IF TRANS-CODE = 'U' PERFORM 100-UPDATE

ELSE IF TRANS-CODE - 'A' PERFORM 110-INSERT
ELSE IF TRANS-CODE = 'D' PERFORM 120-DELETE

ELSE EXHIBIT TRANS-RECORD
PERFORM 200-CREATE-ERROR-FILE.-

READ TRANS-FILE AT END
MOVE 'Y' TO NO-MORE-INPUT
DISPLAY 'END OF FILE'.

*
100-UPDATE.

READ MASTER-FILE INVALID KEY
PERFORM 200-CREATE-ERROR-FILE.

IF FS-MS = '00',
MOVE TRANS-ENTRY TO INFORMATION.
REWRITE MASTER-RECORD,
INVALID KEY DISPLAY 'INVALID KEY'.

*
110-INSERT.

MOVE KEY-CODE TO KEY-MS MASTER-KEY.
MOVE TRANS-ENTRY TO INFORMATION.
WRITE MASTER-RECORD,

INVALID KEY PERFORM 200-CREATE-ERROR-FILE.
*
120-DELETE.

READ MASTER-FILE INVALID KEY DISPLAY 'INVALID READ'.
IF FS-MS = '00',
DELETE MASTER-FILE RECORD, INVALID KEY

PERFORM 200-CREATE-ERROR-FILE.
*
200-CREATE-ERROR-FILE.

WRITE PRINT-LINE FROM TRANS-RECORD.

This program, stored as RELATIVE.COBOL85, can be compiled, linked, and executed with
the following dialog. The first and fifth input records of the file TMONTH cause the
program to perform the error routine.

OK, COBOL85 RELATIVE -L
[COBOL85 Rev. 1.0-22.0 Copyright (c) 1988, Prime Computer, Inc.]
[0 ERRORS IN PROGRAM: <MYMFD>MYDIR>COBOL85>RELATIVE.COBOL85]

OK, BIND -LOAD RELATIVE -LI C0B0L85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE

OK, RESUME RELATIVE

11-24 First Edition

Relative Files

trace: 050-ACCEPT-FILE-NAMES
ENTER MASTER-FILE — KMONTH OR OTHER
KMONTH
ENTER TRANSACTION FILE — TMONTH OR OTHER
TMONTH
trace: 010-UPDATE-MONTHLY-BUDGETS
trace: 020-PROCESS-TRANS
T R A N S - R E C O R D = X T h i s i s w r o n g 0 1
trace: 200-CREATE-ERROR-FILE
trace: 020-PROCESS-TRANS
trace: 120-DELETE
trace: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 020-PROCESS-TRANS
trace: 110-INSERT
trace: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 200-CREATE-ERROR-FILE
END OF FILE
OK,

Input Files
The master file, KMONTH, contains the following records before the program is run:

O l T h i s i s t h e J a n u a r y R e c o r d 0 1
0 3 T h i s i s t h e M a r c h R e c o r d 0 3
0 5 T h i s i s t h e M a y R e c o r d 0 5
0 6 T h i s i s t h e J u n e R e c o r d 0 6
0 8 T h i s i s t h e A u g . R e c o r d 0 8
0 9 T h i s i s t h e S e p t . R e c o r d 0 9
l O T h i s i s t h e O c t o b e r R e c o r d 1 0

The transaction file, TMONTH, contains the following records:

X T h i s i s w r o n g 0 1
D 0 8
UThis is the September Record 0 9
AThis is the February Record 02
U l n v a l i d K e y 9 9

Output Files
The master file, KMONTH, contains the following records after the program is run:

O l T h i s i s t h e J a n u a r y R e c o r d 0 1
0 2 T h i s i s t h e F e b r u a r y R e c o r d 0 2
0 3 T h i s i s t h e M a r c h R e c o r d 0 3
0 5 T h i s i s t h e M a y R e c o r d 0 5
0 6 T h i s i s t h e J u n e R e c o r d 0 6
0 9 T h i s i s t h e S e p t e m b e r R e c o r d 0 9
l O T h i s i s t h e O c t o b e r R e c o r d 1 0

First Edition 11-25

COBOL85 Reference Guide

The PRINT-FILE contains the following records:

X T h i s i s w r o n g 0 1
U l n v a l i d K e y 9 9

For subsequent executions, enter

OK, RESUME RELATIVE

11-26 First Edition

" >

Tape Files

This chapter discusses the following topics related to tape file processing:

• Tape structure
• Blocking strategy
• Record structure
• Multivolume tape files
• Multiple file tapes
• Tape labels
• Compiling, linking, and executing programs that use tape
• Tape error messages

The chapter also discusses elements of the ENVIRONMENT DIVISION, DATA DIVISION,
and PROCEDURE DIVISION as they pertain to tape file processing. The chapter concludes
with an example.

Tape Structure

r

Prime computers support nine-track tape with parity checking. Multiple tape files on one
volume and tape files that span multiple volumes are supported.
The amount of data that can be put on a tape depends on the following factors:

• Length of the tape in inches.
• Tape density in bytes per inch (bpi). Prime supports 800, 1600, and 6250 bpi.
• The blocking factor. The COBOL85 program's BLOCK CONTAINS clause of the file-

description-entry allows grouping of more than one record or character into a block.
The block is then read from or written to the tape at once, saving space. If records are
not blocked, each record is followed by an Interrecord Gap (IRG) or Interblock Gap
(IBG) of 1/2 inch minimum. (Exceptions arc discussed in the Magnetic Tape User's
Guide.) Blocking reduces the proportion of tape used by the IRGs. The size of the block
that may be created in blocking is limited only by the maximum size of the tape buffer.

First Edition 12-1

COBOL85 Reference Guide

The tape buffer size. For unblocked records, buffer size is the size of one record.
Blocked records may occupy a buffer up to the maximum size. The maximum buffer or
block size is listed in Appendix I.

Blocking Strategy
Blocking records in the largest groups possible makes the most efficient use of magnetic
tape. Blocking saves space on the tape because, instead of a 1/2-inch gap after each record, a
1/2-inch gap occurs only after each block of records. Blocking also saves time because only
one 1-0 operation is done per block of records, instead of one operation per record.

Figure 12-1 illustrates the saving of space and, therefore, time.

Unblocked Records

IRG data-record-1 IRG data-record-2 IRG data-record-3 IRG

Blocked Records (Blocking Factor of 3}

IRG data-record-1 data-record-2 data-record-3 IRG

Q1016&1LA-23-0

FIGURE 12-1
Blocking Strategy (IRG = Interrecord Gap)

Internal Structure of Fixed-length Records
Figure 12-2 illustrates fixed-length records of size n stored on magnetic tape, where n
represents an even number of characters.

N

data-record-1 data-record-2

Q10166-1LA-24-0

FIGURE 12-2
Internal Structure of Fixed-length Records (Even Length)

Fixed-length tape records are word-aligned. That is, if the record contains an even number of _
characters (n), then the records align themselves alongside one another.

12-2 First Edition

Tape Files

Figure 12-3 illustrates fixed-length records of size n-1 stored on magnetic tape, where n-1
represents an odd number of characters and @ represents a pad byte.

r

- N -
N - 1

data-record-1

N - 1

data-record-2

Q10166-1LA-25-0

FIGURE 12-3
Internal Structure of Fixed-length Records (Odd Length)

If the record contains an odd number of characters (n-1), then the nth character is a pad byte.
This pad byte, used to fill the record out to the word boundary, contains an undefined value.
The record size passed to the MAGLIB interface routines is specified in words (n/2).
The maximum number of characters that can be written to tape at one time is 12K bytes
(12288 characters). The pad byte within fixed odd-length records is considered part of the
actual record when the record is written to tape.

r Internal Structure of Variable-length Records
Variable-length records are written to tape according to the format specified in the ANSI
Magtape Standard (ANSI X3.27-1978) illustrated in Figure 12-4 below.

r
- * N + 4 * - - - , p + 4 ^

RCW-1 data-record-1 RCW-2 data-record-2

4. m. N ^ ^ A ^ P ■ -
Q10166-1L4-26-0

FIGURE 12-4
Internal Structure of Variable-length Records

r

A variable-length record consists of the Record Control Word (RCW) followed by the actual
data record. The RCW is four characters long and contains the character value of the record
length in bytes. The record length is the sum of the length of the data record and the four
characters of the RCW. For example, RCW-1 above contains the value of n + 4, and RCW-2
contains the value of p + 4. Therefore, the maximum size of the data portion of a variable-
length tape record is restricted to 9995 characters (9999 minus the four-character RCW).
To facilitate tape portability, the RCW is written in ANSI Standard 8-bit ASCII, otherwise
referred to as Latin Alphabet No. 1 (ANSI X3.4-1977). The actual data records, however, are
written in the native character set, defined in Appendix B, unless otherwise specified in the
CODE-SET clause.

First Edition 12-3

COBOL85 Reference Guide

Unlike the word-aligned format of fixed-length tape records, the variable-length record
format allows records to align themselves alongside one another without concern for
interrecord word alignment. If a block ends on an odd byte, a pad byte is inserted at the end
of the last record of the block to fill the block out to the word boundary. If a block ends on
an even byte, no pad byte is necessary. For example, Figure 12-5 illustrates a tape containing
blocked variable-length records and having a blocking factor of 3.

IRG

Block

0009 abcde 0010 fghijk 0008 Imno IRG 0015 pqrstuvwxyz

Q10166-1LA-27-1

where IRG = interrecord gap
@ = block, trailing pad byte

FIGURE 12-5
Blocked Variable-length Records

A pad byte is appended to unblocked variable-length records that contain an odd number of
characters. This pad byte, however, is not considered part of the actual record when the
record is written to tape.

Figure 12-6 illustrates a tape containing unblocked variable-length records.

0009 abcde IRG 0010 fghijk IRG 0007 Imn IRG

Q10166-1LA-28-1

where IRG = interrecord gap
@ = pad byte

FIGURE 12-6
Unblocked Variable-length Records

Multivolume Tape Files
If a tape file is stored on more than one reel of tape, when the end of the first reel is detected,
this message is displayed:

END OF VOLUME - MOUNT NEXT VOLUME
WHEN A NEW VOLUME HAS BEEN MOUNTED, HIT RETURN TO CONTINUE,
OTHERWISE, TYPE "A" TO ABORT PROCESSING

(Recoverable error)

12-4 First Edition

Tape Files

Put the tape drive offline, rewind the current tape, mount and load the next tape in the scries,
and then put the drive online again. Press the carriage return to continue execution.

If the wrong reel is mounted, the following message is displayed:

FILE SECTION-ID NUMBERS DO NOT MATCH
TYPE 'A' TO ABORT, ELSE CORRECT THE PROBLEM AND TYPE RETURN
TO CONTINUE:

To correct the problem, mount and load the correct tape volume in the series, put the drive
online, and press the RETURN key to continue execution.
If an unlabeled tape reel is mounted, and the end of the tape is reached, a fatal error occurs.
See the section Magnetic Tape Error Reporting, later in this chapter.

r Multiple File Tapes

r
-

The MULTIPLE FILE TAPE clause, the expiration date parameter of the VALUE OF
FILE-ID clause, and the OPEN WITH NO REWIND and CLOSE WITH NO REWIND
statements allow you to process multiple files on a single tape volume, and multiple files on
multiple tape volumes. Sec the discussions of each of these elements later in this chapter.
The following sections discuss positioning a multiple file tape for output and for input.

Positioning a Multiple File Tape for Output
The expiration dates of files already written on a multiple file tape control the positioning of
the tape for output. Positioning for output is independent of the position specified in the
POSITION phrase of the MULTIPLE FILE TAPE clause, and of the tape-file-id, owner-id,
and volume-id parameters in the VALUE OF FILE-ID clause.

When the program executes an OPEN OUTPUT statement, COBOL85 positions the tape as
follows:

• If the tape is at the end of data, it is left that way. The new file is appended.
• If the tape is not at the end of data, it is rewound. It is then positioned to its first expired

file. The new file overwrites the expired file. All subsequent data on the tape is lost.
• If no expired file exists on the tape, the tape is positioned to the end of data, and the

new file is appended.

Notes
A file expires on the date that is equal to or later than the expiration date. The default expiration
date is the current date. Therefore, in order to create multiple file tape reels to which
subsequently you can write selectively, specify expiration dates that lie in the future.
You cannot selectively overwrite a particular unexpired tape file.

Use OPEN WITH NO REWIND and CLOSE WITH NO REWIND when you write multiple
files to a tape. Use CLOSE WITH NO REWIND to close a file just written, and OPEN

First Edition 12-5

COBOL85 Reference Guide

WITH NO REWIND to open the next file to be written. When you CLOSE a file WITH NO
REWIND, you not only avoid a redundant rewind, but you also ensure that the next file is
appended, and does not overwrite any existing files.

Caution
When writing several files with different expiration dates to the same tape, write them in the
order of decreasing expiration date. This action prevents the loss of unexpired files when a
preceding expired file is overwritten.

Positioning a Multiple File Tape for Input
The position specified in the POSITION phrase of the MULTIPLE FILE TAPE clause, and
the tape-file-id, owner-id, and volume-id parameters in the VALUE OF FILE-ID clause
control the positioning of a multiple file tape for input.

When the program executes an OPEN INPUT statement, COBOL85 positions the tape as
follows:

• If you specify the POSITION phrase, the tape is positioned according to the position
number specified in the phrase.

• If you omit the POSITION phrase, the tape is positioned to the first file whose tape-
file-id, volume-id, and owner-id match the parameters you specify in the VALUE OF
FILE-ID clause of the file-description-entry.

If the program attempts to position the tape beyond the end of data, a runtime error occurs.

Caution
Correct tape positioning requires that the tape be positioned at its load point when the program f -»
executes the OPEN INPUT statement. Correct access of the specified file is not guaranteed if
the tape is positioned elsewhere, and in particular if the OPEN INPUT statemenl includes the
WITH NO REWIND phrase.

Overview of the LABEL Command
The PRIMOS LABEL command writes tape labels on magnetic tapes and verifies existing
tape labels. These labels can be in IBM format (9-track EBCDIC or 7-track BCD), ANSI
format (9-track ASCII), or Prime format (nonstandard Level 1 volume labels followed by a
dummy HDRl label and two file markers). You can also use LABEL to read existing VOLl
and HDRl labels.

ANSI labels are written in accordance with the American National Standards Institute
standard ANSI X3.27-1978. IBM labels are written in accordance with IBM's specifications ,_«^
(IBM manual GC28-6680-5).

12-6 First Edition

Tape F//es

Any nonstandard labels such as 7-track ASCII or user-defined labels cannot be read or written.
If you use LABEL without the -VOLUME option on a tape that is already labeled, the
command reads the existing label. If you want to relabel a previously labeled tape, you must
use the -INIT option.

To ensure proper initialization of a magnetic tape, use the LABEL command to initialize the
tape prior to processing. Always initialize a tape regardless of whether it was previously
initialized by another program.

Using LABEL
The LABEL command has the following format:

'-TYPE type
-VOLUME volume-id
-OWNER owner
-ACCESS access

LABEL MTn -HELP
-INIT
-OVERWRITE

J" EVEN
\ODD

-PARITY

The elements in the LABEL format have the following meanings:

Element
MTn

-INIT

-OVERWRITE

-OWNER owner

-PARITY

-TYPE type

Meaning
Specifies the tape drive on which the tape to be labeled is mounted, n, an
integer in the range 0 through 7 inclusive, is the tape drive's number. This
argument must be present and must be the first option on the command
line. You must previously have assigned the tape drive to yourself.
Tells LABEL that this tape is being written for the first time. This option must
be used on unformatted tapes or on tapes whose labels should be overwritten.
Tells LABEL to overwrite a BRMS tape. If you try to overwrite an
ARCHIVE, BACKUP, or TRANSPORT BRMS tape, you must use the
-OVERWRITE option.
Identifies the owner of the tape, owner is a string which contains, for
ANSI labels, 1 to 14 characters; for IBM labels, 1 through 10 characters. If
you specify a label that is shorter than the allowed maximum length, it is
blank-padded on the right to the maximum length. If you omit owner,
LABEL uses your login name as the default value. -OWN is a synonym
for-OWNER.
Specifies EVEN or ODD parity for the label. Use this option only with the
-TYPE B option.
Specifies what sort of label you want written. The legal types are

Type
ANSI87
BCD

Description
ANSI X3.27-1987 standard label
IBM label for 7-track BCD tapes

First Edition 12-7

COBOL85 Reference Guide

-VOLUME volume-id

EBCDIC IBM label for 9-track EBCDIC tapes
PRIME Prime ASCII label. This is the default. P, ANSI, and A

are synonyms for label type PRIME.
STANDARDJ ANSI X3.27-1978 standard label. Sl is a synonym for

STANDARDJ.

The volume number that uniquely identifies this tape reel, volume-id must
be in the range 1 through 6 characters long; if it has fewer than 6 charac
ters, it is blank-padded on the right to make six characters. -VOL,
-VOLSER, and -VOLID are synonyms for -VOLUME. If this option is
not present, LABEL attempts to read an existing label from the tape; if this
option is present, LABEL writes a new label to the tape.

Errors Using LABEL
Improper use of the LABEL command results in an error message. These errors are the result
of bad syntax in the LABEL command itself or of a system magnetic tape 1-0 error. See the
Magnetic Tape User's Guide for a complete list of these error messages.

" >

The LABEL Help Facility
The command LABEL -HELP causes LABEL to display at the terminal an abbreviated
description of the command.
For a complete description of tape labels and their use, refer to the IBM publication GC28-
6680, OS Tape Labels and the ANSI publication X3.27-1978, American National Standard
Magnetic Tape Labels for Information Interchange.

Format of Magnetic Tape Labels
Tape labels are tape records that identify and provide processing information about tape reels
and the files they contain. COBOL85 writes tape labels in ANSI Standard 8-bit ASCII,
otherwise referred to as Latin Alphabet No. 1 (ANSI X3.4-1977). COBOL85 writes them in
the format specified in the ANSI Magtape Standard (ANSI X3.27-1978).

COBOL85 supports multiple files on one tape reel, as well as files that span multiple tape reels.

COBOL85 recognizes the following types of tape label records:

• Volume 1 Label Records (VOLl) identify the reel of tape and the owner of the reel. If
the tape has any standard labels at all, it must have a VOLl label as its first record.

• Header 1 Label Records (HDRl) identify and provide information about the tape file.
Such information includes the file-identifier, volume serial number, file section number,
file sequence number, generation number, generation version number, creation and
expiration dates, and the access field. A labeled tape must include a single HDRl label
record before the file.

• Header 2 Label Records (HDR2) contain additional information about the tape file,
such as the record format, block length, and record length. A single HDR2 label follows
the HDRl label record.

12-8 First Edition

Tap© Files

• End-of-file and End-of-volume Label Records (EOF1/EOV1, EOF2/EOV2) mark
the end of a tape file or volume and include identical information to that found on the
corresponding HDRl and HDR2 label records. In addition, EOF1 and EOV1 contain
the block count field.

The record formats and COBOL85 validation mles pertaining to these tape label records are
presented below. For more detailed information, see the Magnetic Tape User's Guide.

Volume 1 Label Record
Figure 12-7 illustrates the format of the VOLl label record.

F i e l d 1 2 3 4 5

Character 1 11 38

Field # Description

5 2 8 0
Q101661-1LA-29-1

of chars. Validated?

r

1 V O L l l a b e l i d e n t i fi e r

2 Vo lume i den t i fie r numbe r
(volume serial number)

3 Reserved for future use

4 O w n e r i d e n t i fi e r

5 Reserved for future use

6 L a b e l - s t a n d a r d v e r s i o n

FIGURE 12-7
Volume 1 Label Record Format

y e s

6 y e s

27 no

14 no

28 no

1 no

COBOL85 validates the VOLl label identifier and the volume identifier number. In field 1,
the VOLl label identifier field must contain the value VOLl. The volume identifier, also
referred to as the volume serial number, must contain the volume-id, as defined by the
LABEL command.

-

r First Edition 12-9

COBOL85 Reference Guide

Header 1 Label Record and EOF1/EOV1 Label Records
Figure 12-8 illustrates the format of the HDRl label record as well as the End-of-File
(EOF1) and End-of-Volume (EOV1) label records.

Field 1

Character 1

4 5 6 9 10 11

22 28 32 36 4042 48 5455 61

12

80
Q101661-1LA-30-1

Fie ld # Descr ipt ion

2

3

4

5

6

7

8

9

10

11

12

HDRl (or EOF1 or EOV1)
labe l i den t i fie r

Tape file ident ifier

File set-identifier number
(volume serial number)

File section number

File sequence number

Generation number

Generation version number

Creation date

Expiration date

Access

Block count
(written for EOFl and EOVl only)

Reserved for future use

of chars. Validated?

yes

17 yes

6 yes

4 yes

4 no

4 no

2 no

6 no

6 yes

1 no

6 no

" >

20 no

FIGURE 12-8
Header 1 Label Record and EOF1/EOV1 Label Records Format

12-10 First Edition

Tape Files

COBOL85 validates

• The HDRl label identifier
• The tape file identifier
• The volume serial number (file set-identifier number)
• The file section number
• The expiration date (multiple file tapes only)

The HDRl label identifier must contain HDRl; the tape file identifier field must contain the
tape file-id; the volume serial number (file set-identifier number) must be the same as the
volume identifier number in the Volume 1 label record; and, in the case of a file that spans
multiple tape reels, the file section number must indicate the tape's sequential position among
the other tape reels of the file.
As indicated in the HDRl table, several additional fields within the HDRl label record are
not currently validated by COBOL85. These fields arc

• File sequence number
• Generation number
• Generation version number fields
• Creation date
• Access fields

However, when created by COBOL85, these fields contain the values specified by the ANSI
Magtape Standard. No error or warning message is issued if any mismatch is found on these
fields, and processing continues.
For the End-of-file 1 (EOF1) and End-of-volume 1 (EOV1) label records, the block count
field is also written. The block count is the number of blocks that have been transferred to
tape for a given magtape file since the beginning-of-file group label sequence.

Note
Although COBOL85 does not validate any of the EOF1 and EOV1 label fields, all label fields
that are written for the HDRl label are also written for the EOF1 and EOV1 labels.

First Edition 12-11

COBOL85 Reference Guide

Header 2 Label Record and E0F2/E0V2 Label Records
Figure 12-9 below illustrates the basic format of the HDR2 label record as well as the End-
of-file (EOF2) and End-of-volume (EOV2) label records:

F i e l d 1 2 3 4 5

Character 15 6 11 16

F i e l d # D e s c r i p t i o n

1 HDR2 (or EOF2 or E0V2)
l a b e l i d e n t i fi e r

2 R e c o r d f o r m a t

3 B l o c k l e n g t h

4 R e c o r d l e n g t h

5 Reserved fo r fu tu re use

80
Q101661-1LA-31-1

of cha r s . Va l i d a t e d ?

4 y e s

1 y e s

5 y e s

5 y e s

G5 no

FIGURE 12-9
Header 2 Label Record and EOF2/EOV2 Label Records Format

The HDR2 label identifier must contain the value HDR2. The record format field must
contain an F for fixed-length records or a D for variable-length records. Any other formats
are not currently supported by the COBOL85 runtime libraries. The record length field must
contain the maximum record length. The block length field must contain the block size. The
block size is determined by multiplying the record length by the blocking factor.

Note
Although COBOL85 does not validate any of the EOF2 and EOV2 label fields, all label fields
that are written for the HDR2 label are also written for the EOF2 and EOV2 labels, except for
the label identifier.

Unlabeled Magnetic Tapes
Use caution when writing to or reading from unlabeled magnetic tape. COBOL85 cannot
determine the record format (fixed or variable) of a tape for which no tape labels are present to
identify the physical tape file attributes. Also, unpredictable results occur if a program attempts
to read a fixed-length record tape file using a variable-length record description and vice versa.

For information on unlabeled magnetic tapes, sec the Magnetic Tape User's Guide.

12-12 First Edition

Tape Files

Compiling, Linking, and Executing Programs That Use Tape
Chapters 2 and 3 discuss compiling, linking, and executing programs. You need no special
compiler options to compile a program that processes tape files. No special libraries or
subroutines are required to link tape processing programs. However, before you execute a
program that uses tape files, you must assign the tape drives. You may also need to assign
tape filenames at runtime, if you have not already assigned them within the program.

Tape Drive Assignments at Execution Time
Assign tape drives with the following command at PRIMOS level:

ASSIGN MTx [-ALIAS MTy]
AS

The value x must represent a physical tape drive from 0 through 7, and the value y must represent
a logical tape drive from 0 through 7. The drivename in the file assignments presented below
must correspond to the number after -ALIAS, if it is used, or else to the number after AS. See
the Magnetic Tape User's Guide, and the example at the end of this chapter.

Note
The tape drive number in the file assignment and in the PRIMOS command ASSIGN must be
the same. It is, however, independent of the device-name (MT9) in the SELECT statement.

Tape File Assignments Within the Program
Usually file assignments are handled within the COBOL85 program. Use a literal or a data-
name in the VALUE OF FILE-ID clause to give the full tape assignment. If the clause
contains a data-name, this field can then be given a value interactively with the ACCEPT
statement. This technique is particularly helpful for drive numbers that are not known at
compile time.
See the section VALUE OF FILE-ID, later in this chapter, for more information.

File Assignments With -FILE_ASSIGN
If you compiled your program with the -FILE_ASSIGN compiler option, execution includes
a request for file assignments, in this format:

ENTER FILE ASSIGNMENTS:
>

Make one entry for each FD whose FILE-ID you wish to assign. Syntax errors are generated
during file assignment for improper formats. When no file assignments remain to be entered,
use a slash mark ([) to conclude the session.

Examples and format are given in the section VALUE OF FILE-ID, later in this chapter.
For additional information on the -FILE_ASSIGN option, see Chapter 2 and Appendix N.

First Edition 12-13

COBOL85 Reference Guide

Assignment Error Messages
The file assignment routine may output the following error messages.

BAD DELIMITER
No equal sign is found, or the equal sign is in an unexpected position.

ILLEGAL SPECIFICATION
The name to the right of the equal sign begins with $ but does not have the form $MTx.

LABEL SPECIFICATION EXPECTED
For magnetic tape, you must specify S or N.

MTn # OUT OF RANGE
The magnetic tape unit number must be in the range 0 through 7.

NAME BUFFER OVERFLOW
The buffer used to store the pathname of the file is full.

NAME REQUIRED
You must specify a name to the right of the equal sign.

NAME TOO LONG
The name to the right of the equal sign is greater than 17 characters for tape-file-id or greater than
six characters for volume-id.

TAPE FILE-ID EXPECTED
No tape file-id was specified in a tape assignment.

VSN EXPECTED
The volume serial number (volume-id) is missing in a tape assignment.

ILLEGAL EXPIRATION DATE
The expiration date for a multiple file tape is invalid.

ILLEGAL EXPIRATION DATE FOR NON-LEAP YEAR
The expiration dale for a multiple file tape is greater than 365 for a non-leap year.

ENVIRONMENT DIVISION
This section contains information that is unique to tape files. Chapter 6 contains information
that applies to all file organizations. Chapters 10 and 11 contain information that applies to
indexed files and relative files, respectively.

INPUT-OUTPUT SECTION — I-O-CONTROL
Use the INPUT-OUTPUT SECTION to specify peripheral devices and information needed to
transmit and handle data between the devices and the program.

Use the MULTIPLE FILE TAPE clause in the I-O-CONTROL paragraph to specify the
location of files on a multiple file reel.

12-14 First Edition

" >

" >

-

Tape F/7es

For/naf
MULTIPLE FILE TAPE CONTAINS {file-name-1 [POSITION integer-1]} • • •

Syntax Rules
1. integer-1 must be greater than zero.
2. file-name-1 must be a sequential file assigned to MT9 that references a labeled tape.
3. file-name-1 must not appear in more than one MULTIPLE FILE TAPE clause, nor more

than once in the same MULTIPLE FILE TAPE clause.

General Rules

1. If a file on a multiple file tape is referenced in the program, you must specify the file in
a MULTIPLE FILE TAPE clause. Optionally, you may specify in the appropriate
MULTIPLE FILE TAPE clause files on multiple file tapes that are not referenced in the
program.

2. A separate MULTIPLE FILE TAPE clause is required for each multiple file tape
accessed by the program.

3. No file can appear in more than one MULTIPLE FILE TAPE clause, nor can a file
appear more than once in the same MULTIPLE FILE TAPE clause.

4. POSITION refers to the sequential position of the file on the reel. The first file on a reel
has position 1, the second position 2, and so on. The POSITION phrase associates a file
with a specific position on the reel. The position specified in this phrase is significant
when the file is opened for input. It is ignored when the file is opened for output.

5. Specify the MULTIPLE FILE TAPE clause only for labeled tape. Multiple file/multiple
volume unlabeled tapes are not supported.

6. No more than one file on a tape reel can be opened at one time.
7. You can use the MULTIPLE FILE TAPE clause in conjunction with the VALUE OF

FILE-ID, CLOSE WITH NO REWIND and OPEN WITH NO REWIND clauses. For
more information on their interaction, see the section Multiple File Tapes, earlier in this
chapter.

DATA DIVISION
This section contains information that pertains to tape files. Chapter 7 contains information
that applies to all file organizations. Chapters 9, 10, and 11 contain information that pertains
to sequential disk files, indexed files, and relative files, respectively.

BLOCK CONTAINS

Specifies the size of a physical record.

First Edition 12-15

COBOL85 Reference Guide

Format
fRECORDS 1BLOCK CONTAINS [integer-1 TOl integer-2

Syntax Rules

\ CHARACTERS/

1. The BLOCK CONTAINS clause is optional.
2. Use the clause only with tape files. PRIMOS disk files do not require explicit blocking

for efficient access.

General Rules

1. For an input file, the BLOCK CONTAINS clause must describe the blocking of the
records when they were created.

2. The clause may be omitted if the physical record (block) contains one, and only one,
complete logical record.

3. If this clause is omitted, records are treated as unblocked.
4. When the RECORDS option is used, the compiler assumes that the block size provides

for integer-2 records of the maximum size shown for the file and then provides
additional space for any required control words.

5. When the word CHARACTERS is used, the physical record size is specified in terms of
the number of character positions required to store the physical record, regardless of the
types of characters used to represent the items within the physical record.

6. When neither the CHARACTERS nor the RECORDS option is specified,
CHARACTERS is the default.

7. When both integer-1 and integer-2 are used, integer-1 is for documentation purposes
only.

8. The maximum size of a block is listed in Appendix I.

CODE-SET
Specifies the character code set used to represent data on the tape.

Format
CODE-SET IS alphabet-name

Syntax Rules
1. When you specify the CODE-SET clause for a file, you must describe all data in the file

as USAGE IS DISPLAY and any signed numeric data with the SIGN IS SEPARATE
clause.

12-16 First Edition

Tap© F/tes

2. The alphabet-name is a programmer-defined name that you specify in the ALPHABET
clause of the SPECIAL-NAMES paragraph.

3. Specify the CODE-SET clause only for tape files.

General Rule
You can specify the alphabet-name of the CODE-SET clause as STANDARD-1,
STANDARD-2, EBCDIC, or NATIVE.

LABEL RECORDS
The LABEL RECORDS clause specifies whether labels exist for the file.

Format
f RECORD IS "1 f STANDARDSLABEL
\ RECORDS ARE J \OMITTED J

General Rules

1. If you do not specify the LABEL RECORDS clause, LABEL RECORDS OMITTED is
the default.

2. OMITTED specifies that no explicit labels exist for the file or device to which the file is
assigned.

3. STANDARD specifies that a label exists for the file and that the label conforms to
system specifications.

4. Tape files can be labeled or unlabeled. However, the following restrictions apply to
unlabeled tapes:

• Multiple file tape reels cannot be created or accessed
• Multivolume tape reels cannot be created or accessed
• File attribute checking is not performed
• A CLOSE statement does not rewind the file
• OPTIONAL files are not supported

VALUE OF FILE-ID
Associates the internal filename with an external file, thus allowing for the linkage of
internal and external filenames.

First Edition 12-17

COBOL85 Reference Guide

Format

VALUE OF FILE-ID IS
{data-name-3literal-2

General Rules

1. The literal is an alphanumeric literal that may not exceed 128 characters.
2. The data-name must be in the WORKING-STORAGE SECTION. It may be qualified,

but it must not be subscripted, indexed, or described with USAGE IS INDEX. The value
of the data-name must not exceed 128 characters.

3. You can override the VALUE OF FILE-ID clause at runtime, if you use the
-FILE_ASSIGN compiler option. For information on the -FILE_ASSIGN option, see
Chapter 2 and Appendix N.

4. Tape filenames in data-name-3 and literal-2 must have one of the following formats:

• For unlabeled tapes,

drivename, label-type

• For multiple file tapes,

drivename, label-type, tape-file-id, volume-id, owner-id, [expire-date]

• For single file tapes,

drivename, label-type, tape-file-id, volume-id

The parameters in these formats contain the following information:

Parameter Contents
drivename $MT(x), where x is a drive number from 0 through 7.
label-type N: Unlabeled tape

S: ANSI standard labels
tape-file-id A 1-character to 17-character field containing the tape-file-id. Use this para

meter to distinguish files on a multiple file tape.
volume-id A 1-character to 6-character field containing the volume-id number.

(Different volume-ids can appear on files on the same tape, implying support
for multiple volume tapes.)

owner-id A 1-character to 14-characler field containing the owner-id.
expire-date A 5-charactcr optional field specifying the expiration date of the file being

referenced. Use this parameter to write files with expiration dates. Because
expire-date is ignored on file input, you can omit it for tape files opened only
for input. The expiration date must be in the format yyddd, where yy is the
year and ddd is the Julian day of the year. The default is the current date
(always expired).

12-18 First Edition ' ■

Tape Files

Excess parameters are ignored at runtime. For more information on the interaction of
these parameters and the MULTIPLE FILE TAPE clause, see the section Multiple File
Tapes, earlier in this chapter.

5. If you do not specify the VALUE OF FILE-ID clause for a file assigned to MT9,
COBOL85 supplies a default file-id as follows:

• For single file tapes, if you specify the LABEL RECORDS ARE STANDARD
clause, the compiler uses the FD entry for the tape-file-id and a value of 1 for the
volume-id. In this case, the default file assignment is $MT0, S, FILENAME, 000001.

• For single file tapes, if you specify the LABEL RECORDS ARE OMITTED clause
(either explicitly or implicitly), the default file assignment is $MT0, N.

• For multiple file tapes, the compiler uses the FD entry for tape-file-id, a value of 1
for the volume-id, a value of DEFAULT for the owner-id, and no expiration date. In
this case, the default file assignment is $MT0, S, FILENAME, 000001, DEFAULT.

6. The implementor-name FILE-ID can be used as a programmer-defined word elsewhere
in the program.

Examples
A tape file named FILEX can be associated with a logical COBOL85 file named TEST-FILE
in any of the following ways.

1. Value is literal:

FD TEST-FILE
LABEL RECORDS STANDARD
VALUE OF FILE-ID '$MT0, S, FILEX, VOLl'.

2. Value is data-name:

FD TEST-FILE
LABEL RECORDS STANDARD
VALUE OF FILE-ID IS TFILE-NAME.

WORKING-STORAGE SECTION.
7 7 T F I L E - N A M E P I C X (2 0) .

An actual filename can be associated with the logical file-name TEST-FILE by
executing COBOL85 statements. For example,

IF NEW-FILE = 1
MOVE '$MT0, S, FILEX, VOLl' TO TFILE-NAME,

ELSE
MOVE '$MT1, S, FILEY, VOLl' TO TFILE-NAME.

First Edition 12-19

COBOL85 Reference Guide

Another way to do it is

MOVE SPACES TO TFILE-NAME
DISPLAY "ENTER TEST-FILE NAME."
ACCEPT TFILE-NAME.

Then, when the request ENTER TEST-FILE NAME is displayed, enter a name such as
$MT0, S, FILEX, VOLl.

3. With -FILE_ASSIGN, you enter a file assignment at execution time. For example,
suppose that in a COBOL85 program the following statements exist:

FD TEST-FILE
LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'FILEl'.

Then, an appropriate runtime dialog is

ENTER FILE ASSIGNMENTS:
> FILEl = $MT0, S, FILEX, VOLl
> /

For additional information on the -FILE_ASSIGN option, see Chapter 2 and Appendix N.

If labels are not needed, you can enter a literal value, such as the following:

VALUE OF FILE-ID IS '$MT0, N'

PROCEDURE DIVISION
This section contains information that pertains to tape files. Chapter 8 contains information
that applies to all file organizations. Chapters 9, 10, and 11 contain information that pertains
to sequential disk files, indexed files, and relative files, respectively.

Tape files may be processed only with sequential l-O. Therefore, DELETE, START,
REWRITE, and any clauses that are appropriate only for indexed or relative files cannot be
used with tape files.

CLOSE
Terminates the processing of files.

Format
REEL

CLOSE I file-name-1 UNIT
WITH NO REWIND

12-20 First Edition
" >

OPEN

r
r

Tap© F//es

Syntax Rule
The files referenced in the CLOSE statement need not all have the same organization or
access.

General Rules

1. A CLOSE statement implies a preceding OPEN on the same file.
2. If a CLOSE statement is executed for a file, no other statement can be executed that

references that file, unless an intervening OPEN statement for that file is executed.
3. Following the successful execution of a CLOSE statement the record area associated

with file-name is no longer available. The unsuccessful execution of such a CLOSE
statement leaves the availability of the record area undefined.

4. The optional WITH NO REWIND phrase specifics that the file reel not be rewound
upon execution of the CLOSE statement.
The WITH NO REWIND phrase is ignored at compile time if it does not apply to a tape
file. However, a status code of 07 is returned at runtime if the file referenced in the
CLOSE WITH NO REWIND statement is not a tape file.
If you do not specify the WITH NO REWIND phrase for a tape file, the execution of
the CLOSE statement automatically positions the file to the beginning of the tape reel,
except for unlabeled tapes. Unlabeled tapes always default to WITH NO REWIND.
If you specify the WITH NO REWIND phrase for a tape file, the execution of the
CLOSE statement suppresses the automatic positioning of the file to the beginning of the
tape reel.
For more information on the use of this phrase in conjunction with multiple file tape
processing, see the section Multiple File Tapes, earlier in this chapter.

5. If REEL or UNIT is specified, the CLOSE statement is ignored and the file status data
item, if specified, is set to indicate status code 07. This rule applies to tape and non-
tape media. REEL and UNIT have no meaning under Prime's tape 1-0 system.

Initiates the processing of files and performs checking and writing of labels.

Format

flNPUT ifile-name-1 [WITH NO REWIND]> • • 0O P E N i > • • •
1 OUTPUT -[file-name-2 [WITH NO REWIND1 > • • -J

Syntax Rule
The files referenced in the OPEN statement need not all have the same organization or
access.

First Edition 12-21

COBOL85 Reference Guide

READ
Releases a record from the tape buffer to the program.

12-22 First Edition

General Rules

1. The successful execution of an OPEN statement determines the availability of the file,
puts the file in open mode, and makes the associated record area available to the
program. Prior to the successful execution of an OPEN statement for a given file, no
statement that references that file can be executed.

2. A file may be opened with the INPUT and OUTPUT phrases in the same program.
Following the initial execution of an OPEN statement for a file, each subsequent OPEN
statement for that same file must be preceded by the execution of a CLOSE statement
for that file.

3. Execution of the OPEN statement does not obtain or release the first data record.
4. If label records are specified for the file, the beginning labels are processed as follows.

• When you specify the INPUT phrase, the execution of the OPEN statement causes
the labels to be checked against the file assignments.

• When you specify the OUTPUT phrase, the execution of the OPEN statement causes
the labels to be written as specified in the file assignments.

5. The file-description-entry for file-name-1, file-name-2, file-name-3, or file-name-4 must
be equivalent to the entry used when the file was created, including blocking of records.

6. For files being opened with the INPUT phrase, the OPEN statement sets the current
record pointer to the first record currently existing within the file. If no records exist in
the file, the current record pointer is set so that the next executed READ statement for
the file results in an AT END condition.

7. Upon successful execution of an OPEN statement with the OUTPUT phrase specified, a
file is created. At that time the associated file contains no data records.

8. The optional WITH NO REWIND phrase specifies that the file reel not be rewound
upon file processing initiation.
The WITH NO REWIND phrase is ignored at compile time if it does not apply to a tape
file. However, a status code of 07 is returned at runtime if the file referenced in the
OPEN WITH NO REWIND statement is not a tape file.
If the WITH NO REWIND phrase is not specified for a tape file, the execution of the
OPEN statement causes the file to be positioned at the beginning of the tape reel.
If the WITH NO REWIND phrase is specified for a tape file, the execution of the OPEN
statement does not cause the file to be repositioned.
For more information on the use of this phrase in conjunction with multiple file tape
processing, see the section Multiple File Tapes, earlier in this chapter.

WRITE

r

Tap© F//es

Format
READ file-name RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]
The results of a READ from tape are the same as those of a READ from disk. However, you
must know how the records were blocked when they were written to tape, and use the
BLOCK CONTAINS clause, if necessary, to specify the same blocking factor.

The READ statement appears to read one record at a time from the tape file. However, a
whole block is read from tape at once and each subsequent READ statement releases one
record to the program.

Include a USE procedure within a declaratives section to handle any 1-0 errors encountered
during a READ operation. A file-status of 98 may be returned to indicate a hardware 1-0
failure that may be recoverable. If a USE procedure is not included and an 1-0 operation is
unsuccessful, the results are undefined and cause the program to terminate. A permanent
error condition may arise for any error encountered that is not recoverable. If so, a file-status
of 30 is returned.

Releases a record to the tape buffer.

Format
WRITE record-name [FROM data-name-1]

[END-WRITE1
The results of a WRITE to tape appear to be the same as those of a WRITE to disk.
However, a WRITE statement actually releases a record to the tape buffer until a block is
filled. The whole block is then written to the tape.

Include a USE procedure within a declaratives section to handle any 1-0 errors encountered
during a WRITE operation. A file-status of 98 may be returned to indicate a hardware 1-0
failure that may be recoverable. If a USE procedure is not included and an 1-0 operation is
unsuccessful, the results are undefined and cause the program to terminate. A permanent
error condition may arise for any error encountered that is not recoverable. If so, a file-status
of 30 is returned.

First Edition 12-23

COBOL85 Reference Guide

Magnetic Tape Error Reporting
Depending on the operation in progress at the time of error detection, magnetic tape error
diagnostics are available for the following types of operations:

• General
• General OPEN operations
• OPEN OUTPUT operations
• OPEN INPUT operations
• WRITE operations
• READ operations
• CLOSE operations

Magnetic tape error diagnostics of each of these types are listed below. Except where
otherwise noted, fatal errors generate a status code 30. For all fatal errors, COBOL85
executes any USE procedure that you specify, and terminates the program.

General Tape Error Diagnostics
TAPE DRIVE NOT ASSIGNED
WHEN THE TAPE DRIVE HAS BEEN ASSIGNED, TYPE "S" TO CONTINUE
(Recoverable error)

The desired tape drive has not been assigned by the AS MTn command (where n is the tape drive
number).
The COBOL85 library enters a PRIMOS command level interlude during which you can assign the
desired magtape device. Subsequently, type S to resume the aborted process.

TAPE DRIVE NOT READY OR OFFLINE (Recoverable error)
A tape must be mounted and loaded on the desired tape drive; the ONLINE button on the tape drive
must be pushed.
Check the physical status of the specified tape drive and ensure that the tape drive is online and
ready.

UNRECOVERABLE TAPE CONTROLLER ERROR ENCOUNTERED
(Fatal error)

An invalid internal operation was attempted on the tape controller in use. This error is most likely
to occur when using cartridge tape controllers, which have limited functionality in terms of tape
movement and positioning.

TYPE 'A' TO ABORT, ELSE CORRECT THE PROBLEM AND TYPE RETURN
TO CONTINUE

This message accompanies recoverable errors, such as write-protected tape, tape drive not ready or
offline, or label mismatch errors. When this message appears, take one of the following actions:

• If the problem can be corrected without aborting, correct the problem (for example, put the
tape drive online) and press the Return key. Processing resumes from the point at which it was
interrupted.

12-24 First Edition

Tape Files

• Suspend or abort the process by typing A. The system enters a PRIMOS command level
interlude, during which you may correct the problem by issuing PRIMOS commands. For
example, you may invoke LABEL to format the tape if the VOLl label record was missing for
a program that specified labeled tape, or you may abort the process and continue with other
activities. If you have corrected the problem, type S to restart the process from the point at
which it was interrupted. This action returns process control to the COBOL85 library.

• Type Q to abort with no restart capability.

Tape Error Diagnostics for General OPEN Operations
OPEN MAGTAPE ERROR - FILE IN USE (Fatal error)

The file specified is currendy in use and cannot be opened by the tape unit.

OPEN OPERATION WAS NOT SUCCESSFUL (Fatal error)
The specified file could not be opened successfully. This error is of an undetermined nature. The
problem may be caused by internal vector or pointer setup problems, inability to successfully
forward or back space on tape, inability to find file marks on tape, or the presence of badspots on
tape.

PROGRAM SPECIFIED MAXIMUM TOTAL PHYSICAL BLOCK SIZE
EXCEEDS SYSTEM MAXIMUM OF 122 88 CHARACTERS
(Fatal error)

The maximum block size specified in the user application exceeds the currently supported system
maximum of 12288 (12K) characters. Check the computed maximum block size (maximum record
size multiplied by block size) in the program.

MAXIMUM RECORD SIZE SPECIFIED FOR VARIABLE
LENGTH RECORD FILE EXCEEDS 9 995 CHARACTERS
(Fatal error)

The maximum record size specified in the user application exceeds the ANSI specified maximum
of 9995 characters.

Tape Error Diagnostics for OPEN OUTPUT Operations
ERROR WRITING HDRl LABEL RECORD (Fatal error)

An error occurred while attempting to write the HDRl label record.

ERROR WRITING HDR2 LABEL RECORD (Fatal error)
An error occurred while attempting to write the HDR2 label record.

VOLl LABEL RECORD MISSING (Recoverable error)
A VOLl label record was expected but not found.
Use the LABEL command to initialize the tape prior to writing to it.

ERROR READING VOLl LABEL RECORD (Recoverable error)
An error occurred while the VOLl label record was being read.
Use the LABEL command to reinitialize the tape.

VOLUME-ID MISMATCH ON VOLl LABEL RECORD (Recoverable error)
The volume-id specified within the user application is not the same as the volume-id on the tape.
Check that the volume-id specified in the program is the same as the volume-id generated by the
LABEL command.

First Edition 12-25

COBOL85 Reference Guide

Tape Error Diagnostics for OPEN INPUT Operations
VOLl LABEL RECORD MISSING (Recoverable error)

A VOLl label record was expected but was not found.
Check that the correct labeled tape has been mounted.

ERROR READING VOLl LABEL RECORD (Recoverable error)
An error occurred while the VOLl label was being read.
The system could not successfully read the VOLl label record. Either the system had difficulty in
correctly positioning and reading the tape, or the expected tape reel was not mounted.

VOLUME-ID MISMATCH ON VOLl LABEL RECORD (Recoverable error)
The volume-id on the tape is not the same as the volume-id that was supplied by the user.
Check the volume-ids specified on the tape and in the program to ensure that the correct volume has
b e e n m o u n t e d a n d s p e c i fi e d b y t h e a p p l i c a t i o n p r o g r a m . - " ^ N ,

ERROR READING HDRl LABEL RECORD (Recoverable error)
An error occurred while the HDRl label record was being read.
The system could not successfully read the HDRl label record. Either the system had difficulty in
correctly positioning and reading the tape, or the expected tape reel was not mounted. In most cases
consider this error to be fatal.

ERROR READING HDR2 LABEL RECORD (Recoverable error)
An error occurred while the HDR2 label record was being read.
The system could not successfully read the HDR2 label record. Either the system had difficulty in
correctly positioning and reading the tape, or the expected tape reel was not mounted. In most cases
consider this error to be fatal.

HDRl LABEL RECORD MISSING (Recoverable error)
An HDRl label record was expected but was not found.
Check that the correct tape volume has been mounted. In most cases consider this error to be fatal.

VOLUME SERIAL NUMBERS MISMATCH (Recoverable error)
The volume serial number (file-set identifier) on the HDRl tape label is not the same as the _ -.
volume-id.
Check that the volume serial number on the tape coincides with the volume-id specified in the
program.

FILE SECTION-ID NUMBERS DO NOT MATCH (Recoverable error)
The file section-id number (also referred to as the file section number) on the tape is not the same
as the file section-id number supplied by the user.
Check that the correct tape volume has been mounted.

HDR2 LABEL RECORD MISSING (Recoverable error)
An HDR2 label record was expected but was not found.
Check that the correct tape volume has been mounted. In most cases consider this error to be fatal.

TAPE FILE-IDS DO NOT MATCH (Fatal error)
The tape file-id field on the tape is not the same as the tape file-id field supplied by the user.
After invoking any DECLARATIVES for status code 35, the program terminates.

12-26 First Edition

* >

Tape Files

INVALID RECORD FORMAT FOUND ON HDR2 LABEL RECORD
ONLY FIXED AND VARIABLE FORMATS ARE SUPPORTED
(Fatal error)

An invalid tape format (such as spanned) has been found on the tape being read. No formats other
than F (fixed) or D (variable) are currently supported by COBOL85. This error is a file attribute
error; COBOL85 returns status code 39.

INVALID RECORD FORMAT - VARIABLE SPECIFIED/FIXED FOUND
(Fatal error)

The user specified variable-length records in the program, but the record format on the HDR2 label
record indicates fixed-length records exist on the tape file. This error is a file attribute error;
COBOL85 returns status code 39.

INVALID RECORD FORMAT - FIXED SPECIFIED/VARIABLE FOUND
(Fatal error)

The user specified fixed-length records in the program, but the record format on the HDR2 label
record indicates variable-length records exist on the tape file. This error is a file attribute error;
COBOL85 returns status code 39.

THE SIZE SPECIFIED DOES NOT MATCH THE HDR2 LABEL RECORD
The block size and/or record size specified in the program is larger than the size specified when the
file was created. This error is a file atuibute error; COBOL85 returns status code 39.

Tape Error Diagnostics for WRITE Operations
END OF TAPE - MULT I PLE-VOLUME UNLABELED TAPE IS UNSUPPORTED
(Fatal error)

The physical end of Uipe has been detected for an unlabeled tape. Multiple reel tape is not allowed
for unlabeled tape; therefore, the process is terminated. This error generates status code 82.

END OF VOLUME - MOUNT NEXT VOLUME
WHEN A NEW VOLUME HAS BEEN MOUNTED, HIT RETURN TO CONTINUE,
OTHERWISE, TYPE "A" TO ABORT PROCESSING
(Recoverable error)

The physical end of tape has been detected for labeled tape. This message appears on the terminal
to alert the operator to mount the next volume. When a new volume has been mounted, press the
Return key to continue processing from the point at which it was interrupted. Otherwise, invoke the
abort option at this point.

UNRECOVERABLE MAGTAPE WRITE ERROR (Fatal error)
The system was unable to successfully write to tape. The problem is of an undetermined nature.
The problem could be caused by the tape drive's inability to position itself correcdy to write the
record or block, or by the presence of badspots on the tape.
This error is not fatal if a file status of 30 is returned through the file status word and a USE
procedure within a declaratives section is present in the program.

TAPE DRIVE IS WRITE PROTECTED - WRITE ACCESS REQUIRED
(Recoverable error)

A write-enable-ring has not been inserted on the tape reel. Therefore, the tape is write-protectcd.
To write to the specified tape, insert a write-enable-ring before processing continues. Otherwise,
modify the program to access the file for INPUT only.

First Edition 12-27

COBOL85 Reference Guide

TOTAL BLOCK SIZE OF BLOCK CURRENTLY BEING WRITTEN
EXCEEDS SYSTEM MAXIMUM OF 12288 CHARACTERS
(Fatal error)

The maximum block size currently being written to tape exceeds the presenUy supported system
maximum of 12288 (12K) characters. Check the computed maximum block size (maximum record
size multiplied by block size) in the program.

MAXIMUM RECORD SIZE SPECIFIED FOR VARIABLE
LENGTH RECORD FILE EXCEEDS 9995 CHARACTERS
(Fatal error)

The maximum record size specified in the user application exceeds the ANSI specified maximum
of 9995 characters.

FILE IS NOT OPEN FOR OUTPUT (Fatal error)
The file specified is not currendy open for writing.

Tape Error Diagnostics for READ Operations
Unexpected end of file (No message)

The end of the file was reached unexpectedly. A file status of 10 is returned in the file status word,
and the AT END path is taken.

END OF TAPE - MULT I PLE-VOLUME UNLABELED TAPE IS UNSUPPORTED
(Fatal error)

The physical end of the tape has been detected for an unlabeled tape. Multiple reel tape is not
allowed for unlabeled tape; therefore, the process is terminated. This error generates status code 82.

END OF VOLUME - MOUNT NEXT VOLUME
WHEN A NEW VOLUME HAS BEEN MOUNTED, HIT RETURN TO CONTINUE,
OTHERWISE, TYPE "A" TO ABORT PROCESSING
(Recoverable error)

The physical end of tape has been detected for labeled tape. This message appears on the terminal
to alert the operator to mount the next volume. When a new volume has been mounted, press the
Return key to continue processing from the point at which it was interrupted. Otherwise, invoke the
abort option at this point.

UNRECOVERABLE MAGTAPE READ ERROR (Fatal error)
The system was unable to successfully read the tape. The problem is of an undetermined nature.
The problem could be caused by the tape drive's inability to position itself correctly to read the
record or block, or by the presence of badspots on the tape.
This error is not fatal if a file status of 98 is returned through the file status word and a USE
procedure within a declaratives section is present in the program. A retry may be possible.

TOTAL BLOCK SIZE OF BLOCK CURRENTLY BEING READ
EXCEEDS SYSTEM MAXIMUM OF 12288 CHARACTERS
(Fatal error)

The maximum block size currently being read from the tape exceeds the presently supported
system maximum of 12288 (12K) characters. Check the computed maximum block size (maximum
record size multiplied by blocking factor) in the program. This error is a file attribute error;
COBOL85 returns status code 39.

FILE IS NOT OPEN FOR INPUT (Fatal error)
The file specified is not currendy open for reading.

" >

~

12-28 First Edition

Example

r

r

Tape F//es

Tape Error Diagnostics for CLOSE Operations
CLOSE OPERATION WAS UNSUCCESSFUL (Fatal error)

The system was unable to successfully close the tape file. The problem is of an undetermined
nature. The problem could be caused by the tape drive's inability to position itself correctly to write
or read the EOF or EOV labels, or by the presence of badspots on the tape.

ERROR WRITING EOF1 LABEL RECORD (Fatal error)
An error occurred while attempting to write the EOF1 label record.

ERROR WRITING EOV1 LABEL RECORD (Fatal error)
An error occurred while attempting to write the EOV1 label record.

ERROR WRITING EOF2 LABEL RECORD (Fatal error)
An error occurred while attempting to write the EOF2 label record.

ERROR WRITING EOV2 LABEL RECORD (Fatal error)
An error occurred while attempting to write the EOV2 label record.

ERROR WRITING TRAILER FILEMARKS (Fatal error)
An error occurred while attempting to write the trailer filemarks.

The following example runs with normal l-O. This program represents the tape portion of the
program OLDCASH given at the end of Chapters 5, 6, 7, and 8.

IDENTIFICATION DIVISION.
PROGRAM-ID. DISBURSE.
A U T H O R . A N N E
INSTALLATION. PRIME.
DATE-WRITTEN. SEPTEMBER 20, 1987.
DATE-COMPILED. 870 612.15:29:20.
REMARKS. THIS PART OF THE PROGRAM WRITES TOTALS

BY DEPARTMENT TO TAPE.

TO WRITE TAPE RECORDS, ENTER YES FOR TAPE REQUEST.
* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT TAPE-FILE, ASSIGN TO MT9.
* *
DATA DIVISION.

*
FILE SECTION.

First Edition 12-29

COBOL85 Reference Guide

FD TAPE-FILE,
LABEL RECORD IS STANDARD,
BLOCK CONTAINS 4 RECORDS,
VALUE OF FILE-ID IS TAPENAME,
DATA RECORD IS TAPE-LINE.

01 TAPE-LINE PIC X(20).

WORKING-STORAGE SECTION.
77 TAPE-CHOICE PIC XXX VALUE ']
77 TAPENAME PIC X(20)

VALUE '$MT0, S, EVELYN
77 TOTALl PIC S9(9)V99
77 TOTAL2 PIC S9(9)V99
77 TOTAL3 PIC S9(9)V99
77 TOTAL4 PIC S9(9)V99
77 TOTAL5 PIC S9(9)V99
77 TOTAL6 PIC S9(9)V99
77 VARIABLE--MONTH PIC X(15) VALUE

NO

COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
COMP-3 VALUE ZERO.
'THIS MONTH ' .

* *
* TA P E O U T P U T
* *

01 TAPE-HEADER.
05 TAPE-MONTH PIC X(15) VALUE SPACES.
0 5 F I L L E R P I C X (5) V A L U E S P A C E S .

01 SAVE-TAPE.
05 SAVE-DATE-TAPE PIC 9(6).
05 SAVE-ACCT-TAPE PIC XXX.
05 SAVE-TOTAL-TAPE PIC S9(9)V99 COMP-3.

* *
PROCEDURE DIVISION.

*
DECLARATIVES.
TAPE-ERROR SECTION. USE AFTER ERROR PROCEDURE ON TAPE-FILE
FIRST-PARAGRAPH.

DISPLAY '**** 1-0 ERROR ON TAPE OUTPUT ***'.
END DECLARATIVES.

*
001-BEGIN.

READY TRACE.
PERFORM 010-GET-JOBINFO.
PERFORM 030-PROCESS-DETAIL.
PERFORM 050-DEPT-TOTALS.
PERFORM 0 90-PROCESS-TAPE.
DISPLAY ' END OF RUN'.
STOP RUN.

*
010-GET-JOBINFO.

*NOT INCLUDED.
*

030-PROCESS-DETAIL.

12-30 First Edition

Tape Files

*NOT INCLUDED
*

050-DEPT-TOTALS.
* *
* MOVE ARBITRARY NUMBERS TO TOTALl, TOTAL2, ETC.
* *

MOVE 11111111 TO TOTALl.
MOVE 22222222 TO TOTAL2.
MOVE 33333333 TO TOTAL3.
MOVE 44444444 TO TOTAL4.
MOVE 55555555 TO TOTAL5.
MOVE 66666666 TO TOTAL6.

*
090-PROCESS-TAPE.

DISPLAY 'IS TAPE OUTPUT DESIRED—ENTER YES OR NO'.
ACCEPT TAPE-CHOICE.
IF TAPE-CHOICE = 'yes' OR

TAPE-CHOICE = 'YES' PERFORM 0 95-WRITE-TAPE THRU
0 97-VERIFY-TAPE,

ELSE DISPLAY 'NO TAPE'.
*

095-WRITE-TAPE.
OPEN OUTPUT TAPE-FILE.
MOVE VARIABLE-MONTH TO TAPE-MONTH.
WRITE TAPE-LINE FROM TAPE-HEADER.
ACCEPT SAVE-DATE-TAPE FROM DATE.
MOVE '100' TO SAVE-ACCT-TAPE.
MOVE TOTALl TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '200' TO SAVE-TOTAL-TAPE.
MOVE TOTAL2 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '410' TO SAVE-ACCT-TAPE.
MOVE TOTAL3 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '420' TO SAVE-ACCT-TAPE.
MOVE TOTAL4 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '430' TO SAVE-ACCT-TAPE.
MOVE TOTAL5 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
MOVE '440' TO SAVE-ACCT-TAPE.
MOVE TOTAL6 TO SAVE-TOTAL-TAPE.
WRITE TAPE-LINE FROM SAVE-TAPE.
CLOSE TAPE-FILE.

*
0 97-VERIFY-TAPE.

DISPLAY 'FIRST TAPE RECORD - VERIFICATION ONLY'. .
OPEN INPUT TAPE-FILE.
MOVE SPACES TO TAPE-HEADER, SAVE-TAPE.
READ TAPE-FILE INTO TAPE-HEADER.

First Edition 12-31

COBOL85 Reference Guide

READ TAPE-FILE INTO SAVE-TAPE.
EXHIBIT SAVE-TOTAL-TAPE.
EXHIBIT SAVE-TAPE.
CLOSE TAPE-FILE.
E X I T.

The following dialog compiles, loads, and executes the program, stored as
TAPECASH.COBOL85. When the tape record SAVE-TAPE is displayed for verification,
the part represented by SAVE-TOTAL-TAPE is not displayed because it is declared as
COMP-3.

OK, COBOL85 TAPECASH -LISTING
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
OK, ASSIGN MTO
Device MTO assigned.
OK, LABEL MTO -TYPE A -VOLID Tl -OWNER EVELYN -INIT
OK, BIND
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]

LO TAPECASH
LI COBOL85LIB
L I

BIND COMPLETE
FILE
OK, RESUME TAPECASH
trace: 010-GET-JOBINFO
trace: 030-PROCESS-DETAIL
trace: 050-DEPT-TOTALS
trace: 0 90-PROCESS-TAPE
IS TAPE OUTPUT DESIRED--ENTER YES OR NO
YES
trace: 095-WRITE-TAPE
trace: 0 97-VERIFY-TAPE
F I R S T T A P E R E C O R D - V E R I F I C A T I O N O N L Y ^ V
SAVE-TOTAL-TAPE = 11111111.00
SAVE-TAPE = 820611100

END OF RUN
OK,

12-32 First Edition

Interprogram Communication

Interprogram communication is the transfer of control and data from one program to
another within a runfile.
The calling program, which must contain a CALL statement, transfers control to the called
program. If you also wish to transfer data, the called program must contain a LINKAGE
SECTION that describes the data, and a USING clause in its PROCEDURE DIVISION
header. The called program can also contain an EXIT PROGRAM or GOBACK statement. If
you do not include a GOBACK or EXIT PROGRAM statement, control returns to the calling
program after execution of the last statement in the called program.
This chapter discusses the LINKAGE SECTION clauses and PROCEDURE DIVISION
verbs that control interprogram communication. It also explains how to link and execute
runfiles that contain more than one program. Finally, the chapter emphasizes the need for
data type compatibilty when a COBOL85 program calls a program written in another Prime
high-level language.

r LINKAGE SECTION

r
r

The LINKAGE SECTION describes data, defined in a calling program, that is available to a
called program.

Format
LINKAGE SECTION.

V level-77-description-entry"]
_record-description-entry _] " * '

Syntax Rules
1. The LINKAGE SECTION in a program is meaningful if, and only if, the program is to

function under the control of a CALL statement, and the CALL statement in the calling
program contains a USING phrase.

First Edition 13-1

COBOL85 Reference Guide

2. The LINKAGE SECTION describes data made available in memory from another
program module, but which is to be referred to in both the calling and the called programs.

3. COBOL85 does not allocate space in a program for data items described in its
LINKAGE SECTION. PROCEDURE DIVISION references to such items are resolved
at load time, by equating the references in the called program to the locations used in the
calling program.

4. Data items defined in the LINKAGE SECTION of the called program can be referred to
in the PROCEDURE DIVISION of that program only if

• They are specified as operands of the USING phrase of the PROCEDURE
DIVISION header or are subordinate to such operands.

• The called program is under the control of a CALL statement with a USING phrase.
(See the example at the end of this chapter.)

5. You can use any record-description clause in Chapter 7 to describe items in the
LINKAGE SECTION, with the following exceptions:

• Specify the VALUE clause only for level-88 items.
• Do not specify the EXTERNAL clause for items defined in the LINKAGE SECTION.
• Each record-name and level-77 name in the LINKAGE SECTION must be unique

(cannot be qualified).
• Arguments in a CALL statement must correspond to the data-names in the USING

list of the PROCEDURE DIVISION header in the called program.
• You need not group into records noncontiguous elementary items (items that bear no

hierarchical relationship to one another). You can define such items in separate level-77
entries.
Such entries must include a level-number 11, a data-name, and a PICTURE clause or
the USAGE IS INDEX, BINARY, COMP, COMP-1, or COMP-2 clause.

PROCEDURE DIVISION

Format
PROCEDURE DIVISION [USING data-name-1 [, data-name-2] • • • [data-name-64]].

Syntax Rules
1. You must define each operand in the USING phrase of the PROCEDURE DIVISION as

a data item in the LINKAGE SECTION of the same program.
2. The data item must have an 01 or 77 level-number.
3. Addresses are passed from an external CALL in one-to-one correspondence to the

operands in the USING list of the PROCEDURE DIVISION header so that data in the
calling program can be manipulated in the called program.

4. Corresponding operands must have identical definitions in the DATA DIVISION of the
calling and called programs.

13-2 First Edition

CALL

r

r
r

Interprogram Communication

5. You must ensure that the size, structure, and alignment of each passed operand are the
same as those of the LINKAGE SECTION operand to which it corresponds. This
equivalence is not checked at execution time.

The following sections, arranged in alphabetical order, discuss PROCEDURE DIVISION
verbs that control interprogram communication.

Allows one program to communicate with another. It causes control to be transferred from
one object program to another within a runfile.

Format

CALL ffota'tM"*'^ [USING data-name-2 [, data-name-3] • • •]
\^literal-l J

[ON OVERFLOW imperative-statement-1]

[END-CALL]

Syntax Rules
1. The CALL statement appears in the calling program.
2. literal-1 must be a nonnumeric literal; data-name-1 must be defined as an alphanumeric

data item.
3. literal-1, or the value of data-name-1, must be the program-name given in the

PROGRAM-ID statement of the called program, not the PRIMOS filename of the called
program.

Note
SEG recognizes only the first 8 characters oi program-name. BIND recognizes the first 32
characters.

4. Include the USING phrase in the CALL statement only if a USING phrase appears in the
PROCEDURE DIVISION header of the called program. Corresponding USING phrases
in the calling and the called programs must have the same number of operands. The
maximum number of data-names allowed after USING is listed in Appendix I.

5. Each operand in the USING phrase must have been defined as a data item in the FILE
SECTION, WORKING-STORAGE SECTION, or LINKAGE SECTION of the calling
program. These data-names can be qualified or subscripted.

6. Arguments in a CALL statement can have any level-number except 66 or 88. They can
be subscripted or qualified.

7. The ON OVERFLOW phrase is checked for syntax only.
8. The END-CALL clause delimits the scope of the CALL statement. For more

information, see the section Scope Terminators, in Chapter 8.

First Edition 13-3

COBOL85 Reference Guide

General Rules

1. The program whose name is specified by literal-1, or by the value of data-name-1, is the
called program; the program in which the CALL statement appears is the calling
program. The execution of a CALL statement transfers control from the calling
program to the called program.

2. A program is in its initial state the first time it is called within a runfile. On all other
entries into the called program, the state of the program remains the same as when
control last passed from its EXIT statement back to the calling program. This includes all
data fields and the status and positioning of all files.

3. Called programs can contain CALL statements. However, a called program must not
contain a CALL statement that directly or indirectly calls the calling program.

4. The data-names specified by the USING phrase of the CALL statement represent those
data items in a calling program that can be referred to in the called program.
The order in which the data-names appear in the USING phrases of the two programs is
critical; correspondence is positional, not by name. Corresponding operands in the called
and calling programs must have the same number of character positions. Corresponding
data-names refer to a single set of data that is available to the called and calling programs.
Any index-names in the calling and called programs always refer to separate indexes.

5. The called program can be written in any language available on a Prime computer.
However, ensure that the alignment of the calling operand and called definitions are
compatible.

Note
If you wish to pass arguments whose size exceeds one segment to a called program written
in a language other than COBQL85, and you do not specify the size of the arguments in the
called program, compile the called program with the -BIG option, if available.

CANCEL
Releases the memory areas occupied by the referenced program.

Format

cancel i^fT'l P ^"Tf2! •..
\^literal-l J |_, hteral-2 J

Syntax Rules
1. literal-1, literal-2, and so on, must each be a nonnumeric literal.
2. identifier-1, identifier-2, and so on, must each be defined as an alphanumeric data item

such that its value can be a program name.

General Rule
CANCEL is syntax-checked only.

13-4 First Edition

Interprogram Communication

ENTER
Used for documentation only. This statement has no effect on the compiler or the compiled
program.

Format
ENTER language-name [routine-name].

Syntax Rule
You can use the language-name and routine-name following ENTER as programmer-defined
words elsewhere in the program. Each word must contain at least one alphabetic character.

EXIT PROGRAM
Marks the logical end of a called program.

Format
EXIT PROGRAM.

Syntax Rules
1. The EXIT PROGRAM statement must appear in a sentence by itself.
2. The EXIT PROGRAM sentence can be the only sentence in a paragraph. If used, it must

be the last sentence in the paragraph.

General Rules

1. The execution of an EXIT PROGRAM statement in a called program returns control to
the calling program.

2. An EXIT PROGRAM statement in a program that is not invoked by a CALL statement
functions as an EXIT statement.

3. When you use the -FILE_ASSIGN compile option, EXIT PROGRAM suppresses the
request for interactive file assignments. (See Chapter 3, Linking and Executing Programs.)

GOBACK — Prime Extension
Marks the logical end of a called program.

Format
GOBACK

First Edition 13-5

COBOL85 Reference Guide

General Rules

1. In a called program, execution of GOBACK returns control to the calling program.
2. A GOBACK statement in a program that is not called functions as an EXIT statement.
3. GOBACK is a synonym for EXIT PROGRAM.

Linking and Executing More Than One Program
To create a runfile containing interdependent programs, use BIND to link the program object
files according to the steps listed in Chapter 3. You must link the main program first,
followed by the called programs. Chapter 3 explains naming conventions for object files and
runfiles. See also the example later in this section.

Note
For information on using the SEG loading utility, see Appendix M.

Error Messages
If the BIND utility does not return the message BIND COMPLETE after you enter the
subcommand LI alone, you probably did not link all required subprograms or libraries. At
this point you can use the MAP -UNDEFINED subcommand to locate the unresolved
references.

If you attempt to execute a runfile with unresolved references, the system may return a
message such as LINKAGE. FAULT $ or POINTER. FAULT $, or may appear to run the
program. For more information on BIND, see the Programmer's Guide to BIND and EPFs.

Example
This example presents two programs. The first, CALLER, exhibits some values, then calls
the second, CALLED, which changes those values. CALLER then exhibits the changed
values. Finally, the example shows how to load and execute the two programs together.

Prime Extension: The argument passed between the two programs is defined with level 02
in CALLER, but level 01 in CALLED.

Calling Program:
SOURCE FILE: <MYMFD>MYDIR>COBOL85>CALLER.COBOL85
COMPILED ON: THU, JUL 28 1988 AT: 13:22 BY: C0B0L85 REV. 1.0-22.0 04/18/88.09:36
Options selected: CALLER -LISTING
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default):

64V No_Ansi_Obsolete Big_Tables Binary CALCindex No_COMP No_CORrMap
No_DeBuG No_Data_Rep_Opt No_ERRorFile ERRTty No_EXPlist No_File_Assign
Formatted_DISplay No_HEXaddress Listing* No_MAp No_OFFset OPTimize (2)
No_PRODuction No_RAnge No_SIGnalerrors Silent (0) No_SLACKbytes TIME
No_STANdard No_STATistics Store_Owner_Field SYNtaxmsg No_TRUNCdiags
VARYing No_XRef

13-6 First Edition

DATA D:[VISION.

WORKING-STORAGE :SECTION.
01 Al.

02 A2 PIC X VALUE 'A' .
02 A3.

03 Al PIC X VALUE 'B' .
03 A5 PIC X VALUE 'C .
03 A6.

04 A7 PIC X VALUE ' D' .
04 A8 COMP-2 VALUE -31415.9E-4

03 A9 PIC X(10) VALUE 'COBOL85

r
r

Interprogram Communication

1 I D E N T I F I C A T I O N D I V I S I O N .
2 P R O G R A M - I D . C A L L E R .
3 *
4
5
6
7
8
9

10
11
12
13
14
15
16
1 7 *
1 8 P R O C E D U R E D I V I S I O N .
1 9 E X H I B I T N A M E D A 4 .
2 0 E X H I B I T N A M E D A 5 .
2 1 E X H I B I T N A M E D A 7 .
2 2 E X H I B I T N A M E D A 8 .
2 3 E X H I B I T N A M E D A 9 .
2 4 C A L L ' C A L L E D ' U S I N G A 3 .
2 5 E X H I B I T N A M E D A 4 .
2 6 E X H I B I T N A M E D A 5 .
2 7 E X H I B I T N A M E D A 7 .
2 8 E X H I B I T N A M E D A 8 .
2 9 E X H I B I T N A M E D A 9 .
3 0 S T O P R U N .

Called Program:

SOURCE FILE: <MYMFD>MYDIR>COBOL85>CALLED.COBOL85
COMPILED ON: THU, JUL 28 1988 AT: 13:21 BY: COBOL85 REV. 1.0-22.0 04/18/88.09:36
Options selected: CALLED -LISTING
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default):

64V No_Ansi_Obsolete Big_Tables Binary CALCindex No_COMP No_CORrMap
No_DeBuG No_Data_Rep_Opt No_ERRorFile ERRTty No_EXPlist No_File_Assign
Formatted_DISplay No_HEXaddress Listing* No_MAp No_OFFset OPTimize(2)
No_PRODuction No_RAnge No_SIGnalerrors Silent (0) No_SLACKbytes TIME
No_STANdard No_STATistics Store_Owner_Field SYNtaxmsg No_TRUNCdiags
VARYing No_XRef

1 I D E N T I F I C A T I O N D I V I S I O N .
2 P R O G R A M - I D . C A L L E D .
3 *
4 D A T A D I V I S I O N .
5 *

9
10
11
12
13
14
15

First Edition 13-7

LINKAGE SECTION.
01 ARGl.

03 A4 PIC X.
0 3 A5 PIC X.
03 A6.

04 A7 PIC X.
04 A8 COMP-2.

04 A9 PIC X(10
PROCEDURE DIVISION USING ARGl .

DISPLAY 'ENTERING CALLED'.

COBOL85 Reference Guide

1 6 M O V E ' X ' T O A 4 .
1 7 M O V E ' Y ' T O A 5 .
1 8 M O V E ' Z ' T O A 7 .
1 9 M O V E 0 T O A 8 .
2 0 M O V E ' N E W C O B O L 8 5 ' T O A 9 .
2 1 G O B A C K .

Compilation, Linking, and Execution: To mn CALLER and CALLED together, follow
these steps:

1. Compile CALLER.COBOL85.

OK, C0B0L85 CALLER -LISTING
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988)

[0 ERRORS IN PROGRAM: CALLER.COBOL85]

2. Compile CALLED. COBOL85.

OK, COBOL8S CALLED -LISTING
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: CALLED.COBOL85]

3. Use BIND to create the runfile.

OK, BIND -LOAD CALLER -LOAD CALLED -LI COBOL85LIB -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE
OK,

4. Execute the runfile.

OK, RESUME CALLER
A4 = B
A5 = C
A7 = D
A8 = -3.1415900000000E+0000
A9 = COBOL85
ENTERING CALLED
A4 = X
A5 = Y
A7 = Z
A8 = O.OOOO00OOOO00OE+00OO
A9 = NEWCOBOL85
OK,

Calling a Program From an EPF Library: If a calling program of a runfile contains
CALL statements of the form CALL data-name-1, you must take the following additional
steps before linking and executing the runfile:

• Build the called programs into a program-class library EPF.
• Declare the called programs as entrypoints.
• Add the library EPF name to your ENTRYS search mles.

13-8 First Edition

Interprogram Communication

For example, to call the program CALLED.COBOL85 from an EPF library, follow these steps:

1. Compile CALLED.COBOL85 as in the previous example; then build CALLED.BLN
into a program-class library EPF as follows:

OK, BIND
[BIND Rev. 22.0 Copyright (c) 1988, Prime Computer, Inc.]
: LIBMODE -PROGRAM
Library is per program type

L O A D C A L L E D / * n a m e o f b i n a r y fi l e
E N T R Y N A M E C A L L E D / * P R O G R A M - I D
LI COBOL85LIB
L I

BIND COMPLETE
: F I L E M Y. S U B R O U T I N E S . R U N / * p r o g r a m - c l a s s l i b r a r y
EPF
OK,

2. Add the library EPF name, MY.SUBROUTINES.RUN, to your ENTRYS search mles.
3. Use the SET_SEARCH_RULES command to enable your updated ENTRY$ search mles.
4. Modify CALLER.COBOL85 from the previous example, as follows:

WORKING-STORAGE SECTION.
01 WORK-FIELDS.

05 SUBROUTINE-NAME PIC X(32).

PROCEDURE DIVISION.

DISPLAY 'ENTER SUBROUTINE NAME ...'
ACCEPT SUBROUTINE-NAME.
CALL SUBROUTINE-NAME USING A3.

5. Compile CALLER.COBOL85 as in the previous example: then link CALLER.BIN, as
follows:

OK, BIND
[BIND Rev. 22.0 Copyright (c) 1988, Prime Computer, Inc.]

LOAD CALLER
LI COBOL85LIB
L I

BIND COMPLETE
: FILE
OK,

First Edition 13-9

COBOL85 Reference Guide

6. Now when you execute CALLER, it prompts you for the name of the called program.

Table 13-1 summarizes compatible data types. For more information on language interfaces,
see the Subroutines Reference /.

13-10 First Edition

OK, RESUME CALLER
A4 = B
A5 = C
A7 = D
A8 = -3.1415900000000E+0000
A9 = COBOL85
ENTER SUBROUTINE NAME ...
CALLED
ENTERING CALLED
A4 = X
A5 = Y
A7 = Z
A8 = 0.0000000000000E+0000
A9 = NEWCOBOL85
OK,

If CALLER cannot find CALLED at runtime, the system displays the following error
message:

Error: condition "LINKAGE.FAULT$" raised.
Entry name "CALLED" not found while attempting to resolve
dynamic link from procedure "CALLER".
ER!

If this happens, then either your ENTRYS search mles list does not include
MYSUBROUTINES.RUN, or MY.SUBROUTINES.RUN does not include the
entryname CALLED.

For more information on library EPFs, entrypoints, and search lists, see the Advanced
Programmer's Guide.

Language Interfaces
Because all Prime high-level languages are alike at the object-code level, COBOL85 object
files can call and be called by object files produced by the BASICV, CC, CBL, FTN, Fll,
PASCAL, PMA, PLl, and PL1G compilers, provided that you observe the following
restrictions:

• Write all 1-0 routines in the same language.
• If you wish to pass arguments whose size exceeds one segment to a called program written

in a language other than COBOL85, and you do not specify the size of the arguments in the
called program, compile the called program with the -BIG option, if available.

• Ensure that data types for variables being passed as arguments do not conflict.

Interprogram Communication

r

r

<6

eg~ j
a
.5

2_1
L U ^ "

53

r
r

Pi
CQ _-

CO S3

C O (R

LU LU Z

E E

cs cs

oi oi d
LU LU <

££gz z S

CQ C-O;

5 °° u
0 o.

O l . O ^ ^5 °° u
oy Sa o.

t_ EO 3

U
o

x>

X SE

oi ^ u u
LU LU <

-J -1

Oi
LU
O

§ AS-
CO IflONc_-oCo
5 co cj
0 Cu

On 00

_, M u
U Cu

H
Z

3>
2

>-
oi
§~~6 o C
go<^

U Cu

o C-
C u ^ ^

O o-

CO

CO

UJ UJ
Oi oi

LU LUoi oi

ou

cs

ou
C-,1u

ao

<

gp.

u S
J5 CO

LU
Oi

X)a
c•a

- J<
LO
Oi

3-sOO C3
CS 3

s s

LUz

i i
CQ

X2
•a

LU

pq

First Edition 13-11

COBOL85 Reference Guide

!
8?CQ

- J
CDI

I
C*3

11

& _,

13-12 First Edition

< SSoi
ĉ <><3
Q cu o. E

S3o i
E < x 3
d E E E

■S b
BO <W

3s

Si C3N
V5 (J
Q E

J'Stax bb
E'-3

J-is.
is IX M ME =a '-a

^ z

i i
U

-ELoz

z <

__-sl^

_s M
-©•rc a<u <*
i N

■ I s

OigPLU O Oi

o

8

8

8,
15
cs

a >

c
'8.

LU
Q

X
g

Oh

2

co•a

3

4{ * 3

S§

i l
_i£ g'a
2-S

<_> co
.•2 S
1/5 *""

.11
a «

•Bfl

*)

The SORT and MERGE Verbs

r The SORT verb orders one or more data files. The MERGE verb combines two or more
identically ordered files. Each verb manipulates its files according to a set of user-specified
keys contained within each record.
This chapter discusses sort and merge operations, and the elements of the ENVIRONMENT
DIVISION, DATA DIVISION, and PROCEDURE DIVISION that pertain to sort and merge
operations. The discussions of the MERGE and SORT statements include program examples.

Sort and Merge Operations

-

To accomplish sort or merge operations, the program must use the SELECT clause in the
ENVIRONMENT DIVISION, the sort or merge file description (SD) entry in the DATA
DIVISION, and the SORT or MERGE statement in the PROCEDURE DIVISION.
A sort or merge operation ordinarily names

• One or more source files containing data to be sorted or merged. (Merge operations
require two source files.) List these files in a GIVING clause.

• One or more destination files to contain resulting sorted or merged data. List these files
in the USING clause.

• A work file (usually referred to as the sort file or merge file).

A program can substitute special processing for the preprocessing and postprocessing
provided by the SORT and MERGE verbs. For example, the program can create or select
certain records to be sorted, and process sorted or merged records in memory. Input and
output procedures that you name in the SORT statement, and output procedures that you
name in the MERGE statement contain this special processing. Input procedures must contain
RELEASE statements, and output procedures must contain RETURN statements.

r
r First Edition 14-1

COBOL85 Reference Guide

Linking Sort and Merge Programs
When you create a runf ile that includes a SORT or MERGE statement, include the sort library
(VSRTLI) in the linking sequence. An example of linking is given at the end of this chapter.

ENVIRONMENT DIVISION — I-O-CONTROL
You can use the SAME clause in the I-O-CONTROL paragraph to specify the memory area
to be shared by different files.

Format
I-O-CONTROL.

SAME
RECORD
SORT
SORT-MERGE

AREA FOR file-name-1, {file-name-2}

14-2 First Edition

Note
The SORT verb invokes either PRIMOS SORT or the separately priced SyncSort/PRIME,
whichever is installed on the system. A COBOL85 program can also invoke either PRIMOS SORT
or SyncSort/PRIME through a subroutine call. For information on PRIMOS SORT, see the
PRIMOS User's Guide. For information on SyncSort/PRIME, see the SyncSort/PRIME
Reference Manual.

Strategy
If your application requires special operations, such as selecting records to be sorted or
selecting records to be written to an output file, use input or output procedures, possibly
combined with USING and GIVING clauses, to minimize the number of records processed.

For example, if you want to produce a sorted list of customers whose account numbers are
greater than a specific value, specify an input procedure and a GIVING file. Within the input ^
procedure RELEASE only those records whose account numbers qualify for sorting.
Likewise, you can produce a sorted list of selected customers by specifying a USING file and
an output procedure. In this case, COBOL85 sorts all the records in the file. In the output
procedure, code RETURN statements to retrieve each sorted record, but WRITE only
selected records to the output file. This method is not as efficient as the first, especially for
files containing many records, because COBOL85 processes each record more often.

Note
When you specify the USING and GIVING clauses, COBOL85 may simulate input and output
procedures if additional file processing is required. For example, tape files, indexed files,
relative files, multiple GIVING files, USE procedures, and files of different sizes need special
processing from the COBOL85 runtime libraries. COBOL85 provides the required processing
by simulating input and output procedures.

77?e SORT and MERGE Verbs

Syntax Rules
1. In the SAME clause, SORT and SORT-MERGE are equivalent.
2. If you use the SAME SORT AREA or SAME SORT-MERGE AREA clause, at least

one of the file-names must represent a sort or merge file. You may also name files that
do not represent sort or merge files in the clause.

3. More than one SAME clause may be included in a program. However,

•

A file-name must not appear in more than one SAME RECORD AREA clause.
A file-name that represents a sort or merge file must not appear in more than one
SAME SORT AREA or SAME SORT-MERGE AREA clause.
If a file-name that does not represent a sort or merge file appears in a SAME AREA
clause and in one or more SAME SORT AREA or SAME SORT-MERGE AREA
clauses, all the files named in the first clause must be named in the second clause(s).

4. The files referenced in the SAME SORT AREA, SAME SORT-MERGE AREA, or
SAME RECORD AREA clause need not all have the same organization or access.

General Rules

1. The SAME RECORD AREA clause specifies that two or more files are to use the same
memory area for processing the current logical record. All the files may be open at the
same time. A logical record in the SAME RECORD AREA is considered as a logical
record of each opened output file whose file-name appears in this SAME RECORD
AREA clause and of the most recently read input file whose file-name appears in this
SAME RECORD AREA clause. This is equivalent to implicit redefinition of the area;
records are aligned on the leftmost character position.

2. If you use the SAME SORT AREA or SAME SORT-MERGE AREA clause, at least
one of the file-names must represent a sort or merge file. You may also name files that
do not represent sort or merge files in the clause. This clause specifies that storage is
shared as follows:

• The SAME SORT AREA or SAME SORT-MERGE AREA clause specifies a
memory area that will be made available for use in sorting or merging each sort or
merge file named. Thus, any memory area allocated for sorting or merging a sort or
merge file is available for reuse in sorting or merging any other sort or merge file.

• In addition, storage areas assigned to files that do not represent sort or merge files
may be allocated as needed for sorting or merging the sort or merge files named in
the SAME SORT AREA or SAME SORT-MERGE AREA clause.

• Files other than sort or merge files do not share the same storage area with each
other. If you wish these files to share the same storage area with each other, the
program must also include a SAME AREA or SAME RECORD AREA clause
naming these files.

• During the execution of a SORT or MERGE statement that refers to a sort or merge
file named in this clause, any non-sort-merge files named in the same clause must be
closed.

First Edition 14-3

COBOL85 Reference Guide

DATA DIVISION — FILE SECTION
A sort-merge file description (SD) in the FILE SECTION famishes information concerning
the physical structure, identification, and record names of the sort or merge file. There are no
label procedures that you can control, and the rules for blocking and internal storage are
peculiar to the SORT statement.

Format
SD file-name-1

(CONTAINS integer-1 CHARACTERS

IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS!

CONTAINS integer-4 TO integer-5 CHARACTERS

IS NOT VARYING IN SIZE

RECORD^

TnATA fRECORD IS "1 , , , M ~|
[MTA \ RECORDS ARE r{data'name'I] • " J ■

Syntax Rules
1. The level indicator SD identifies the beginning of the sort-merge file description.
2. The clauses that follow file-name, and their order of appearance, are optional.
3. One or more record-description-entries must follow the file description; however, no 1-0

statements may be executed for this file.
4. The file must be specified in a SELECT clause and assigned to PFMS or PRIMOS.
5. A sort-merge file description may appear anywhere in the FILE SECTION.
6. The record-description-entry must specify all the data items listed as keys (at least one)

in the SORT or MERGE statements that reference the sort or merge file.

PROCEDURE DIVISION
The following sections discuss these COBOL85 statements:

• MERGE
• RELEASE
• RETURN
• SORT

The discussions of MERGE and SORT each include a program example.

14-4 First Edition

MERGE

777© SORT and MERGE Verbs

Combines two or more identically sequenced files on a set of specified keys, and during the
process makes records available, in merged order, to an output procedure or to one or more
output files.

Format

MERGE file-name-1 ON jpFsrENDBVC I KEY data"name"1 t data-name-2]

l~™ f ASCENDING 1 -____, , t - r . , „ 1ON < DEscFNDING I data-name-3 [, data-name-4] • • •

[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4] • • •

I I f T I - T R O I I C H " " 1
OUTPUT PROCEDURE IS procedure-name-1 A THRy >- procedure-name

GIVING file-name-5 [, file-name-6]

r

r
c

Syntax Rules
1. "Each file-name-1 must be described in a sort-merge file-description-entry in the DATA

DIVISION.
2. procedure-name-1 specifies the first section or paragraph in an output procedure.

procedure-name-2, if specified, identifies the last section or paragraph of an output
procedure.

3. Each file-name-2, file-name-3, file-name-4, file-name-5, and file-name-6 must be
described in a file-description-entry, not in a sort-merge file-description-entry, in the
DATA DIVISION.

4. The actual size(s) of the logical record(s) described for file-name-2, file-name-3, and
file-name-4 (the USING files) may be different from the actual size of the logical
record(s) described for file-name-1. The restrictions are as follows:

• If file-name-1 contains variable-length records, the size(s) of the records contained in
the USING files must not be less than the smallest record nor larger than the largest
record described for file-name-1.

• If file-name-1 contains fixed-length records, the size(s) of the records contained in
the USING files must not be larger than the largest record described for file-name-1.
If the record(s) described for the USING files are smaller than the records in file-
name-1, the records are left justified, and any unused character positions at the right
end of the record are filled with blanks when the record is released to the merge
utility.

First Edition 14-5

COBOL85 Reference Guide

5. The actual size(s) of the logical record(s) described for file-name-5 and file-name-6 (the
GIVING files) may be different from the actual size of the logical record(s) described
for file-name-1. The restrictions are as follows:

• If file-name-5 contains variable-length records, the size(s) of the records contained in
file-name-1 must not be less than the smallest record nor larger than the largest
record described for file-name-5.

• If file-name-5 contains fixed-length records, the size(s) of the records contained in
file-name-1 must not be larger than the largest record described for file-name-5. If
the record(s) described for file-name-1 are less than the record size specified for the
GIVING file, the records are left justified, and any unused character positions at the
right end of the record are filled with blanks when the record is returned from the
merge utility.

6. The logical record size(s) associated with file-name-5 and file-name-6 may be larger
than the largest record size described for file-name-2, file-name-3, and file-name-4. The
smaller record is left justified, and any unused character positions at the right end of the
record are filled with blanks.

7. The words THRU and THROUGH are equivalent.
8. data-name-1, data-name-2, data-name-3, and data-name-4 are KEY data-names and

are subject to the following mles:

• The data items identified by KEY data-names must be described in records
associated with file-name-1.

• KEY data-names may be qualified.
• The data items identified by KEY data-names must not be variable-length items.

KEY data-names for variable-length records must be within the fixed portion of the
variable-length record.

• If file-name-1 has more than one record description, then the data items identified by
KEY data-names need be described in only one of the record descriptions.

• None of the KEY data-names can be described by an entry that either contains an
OCCURS clause or is subordinate to an entry that contains an OCCURS clause.

9. MERGE statements may not appear in the declaratives portion of the PROCEDURE
DIVISION or in an input or output procedure associated with a SORT or MERGE
statement. MERGE statements, wherever they occur, must not be executed under the
control of an input or output procedure.

10. You can specify a maximum of twenty files in the GIVING clause of the MERGE
statement. Exceeding this maximum causes a fatal error. These GIVING files may all be
of different types and record formats.

11. No more than one GIVING file may specify a tape file on the same reel.
12. You can specify a maximum of eleven files in the USING clause of the MERGE

statement. Exceeding this maximum causes a fatal error. These USING files may be
compressed or uncompressed, fixed-length or variable-length.

13. Full tape support for the MERGE statement is provided. This includes support for
single-reel single-volume, single-reel multi-volume, multi-reel single-volume, and multi
reel multi-volume tape files used in the USING and GIVING clauses as well as specified
within the corresponding OUTPUT PROCEDURE.

14-6 First Edition

77?e SORT and MERGE Verbs

No two tape files specified in any one MERGE statement can reside on the same
multiple-file reel.
No pair of file-names in a MERGE statement may be specified in the same SAME
AREA, SAME SORT AREA or SAME SORT-MERGE AREA clause. Files named in
the GIVING phrase may be specified in a SAME RECORD AREA clause.

14. The alphabet-name is a programmer-defined word and is defined in the SPECIAL-
NAMES paragraph in the CONFIGURATION SECTION. It may be specified as
NATIVE, STANDARD-1, STANDARD-2, or EBCDIC. More discussion of these
collating sequences is given with SORT below.

General Rules

1. Files referenced in a MERGE statement must be closed prior to execution of the
MERGE and may not be opened until the merge operation is complete. An output file in
an output procedure must be opened by an explicit OPEN statement, written, probably in
the output procedure, and then explicitly CLOSED.
The MERGE statement merges all records contained in file-name-2, file-name-3, and
file-name-4. These files are automatically opened and closed by the merge operation
with all implicit functions performed, such as the execution of any associated USE
procedures, and the setting of any associated file status codes. On termination, status of
all files is as if a CLOSE statement were executed for each file.

2. The execution of any USE procedure must not cause the execution of any statement that
manipulates the files referenced by either the USING or GIVING clauses.

3. The data-names following the word KEY are listed from left to right in the MERGE
statement in order of decreasing significance without regard to how they are divided into
KEY phrases. In the format, data-name-1 is the major key, data-name-2 is the next most
significant key, and so on.
• When the ASCENDING phrase is specified, the merged sequence is from the lowest

value of the KEY data-names to the highest value.
• When the DESCENDING phrase is specified, the merged sequence is from the

highest value of the KEY data-names to the lowest value.
• The key values are compared according to the rules for comparison of operands in a

relation condition. (See the section titled Conditional Expressions, in Chapter 4.)

4. If the COLLATING SEQUENCE is not specified, the MERGE statement uses the
collating sequence specified in the PROGRAM COLLATING SEQUENCE clause of
the OBJECT COMPUTER paragraph. The collating sequence is either NATIVE,
STANDARD-1, STANDARD-2, or EBCDIC. (The default is NATIVE.)

5. The output procedure must consist of one or more sections or paragraphs that appear
contiguously in a source program and do not form part of any other procedure. In order
to make merged records available for processing, the output procedure must include the
execution of at least one RETURN statement.
The output procedure's range includes all statements that are executed as a result of a
transfer of control by the CALL, EXIT, GO TO, and PERFORM statements, as well as
all statements in declarative procedures that are executed as a result of the execution of
statements in the range of the output procedure.

First Edition 14-7

COBOL85 Reference Guide

Control must not be passed to the output procedure except when a related SORT or
MERGE statement is being executed. The output procedure may consist of any
procedures needed to select, modify, or copy the records that are being returned one at a
time in merged order, from file-name-1. The restrictions on the statements within the
output procedure are as follows:
• The range of the output procedure must not cause the execution of any MERGE,

RELEASE, or SORT statements.
• The statements within the output procedure must not manipulate the files referenced

by the USING clause.
• The remainder of the PROCEDURE DIVISION must not contain any transfers of

control to points within the output procedures; ALTER, GO TO, and PERFORM
statements in the remainder of the PROCEDURE DIVISION arc not permitted to
refer to procedure-names within the output procedures.

6. If an output procedure is specified, control passes to it during execution of the MERGE
statement. When control passes the last statement in the output procedure, the merge
terminates, and control passes to the next executable statement after the MERGE
statement. Before entering the output procedure, the merge operation reaches a point at
which it can select the next record in merged order when requested. The RETURN
statements in the output procedure are the requests for the next record.

7. If the GIVING phrase is specified, all the merged records in file-name-1 are
automatically written on file-name-5, file-name-6, and so on, as the implied output
procedure for this MERGE statement.

8. In the case of identical key fields between records from two or more input files, the
records are written on file-name-5, file-name-6, and so on, or returned to the output
procedure, in the order that the associated input files are specified in the MERGE
statement.

9. The results of the merge operation are predictable only when the records in the files
referenced by file-name-2, file-name-3, and so on, are ordered as described in the
ASCENDING or DESCENDING KEY clause associated with the MERGE statement.

10. All file types are supported for both the USING and GIVING clauses of the MERGE ^-^
statement. This includes INDEXED and RELATIVE (MIDASPLUS or PRISAM), as
well as SEQUENTIAL (PRIMOS, MT9, PRISAM).

11. If an indexed file is specified in the GIVING clause, the first specification of the data-
name-1 must be associated with an ASCENDING phrase. In addition, the data item
referenced by data-name-1 must occupy the same character positions in its record as the
associated primary key for that file.

12. If a relative file is specified in the GIVING clause, the relative key data item for the first
record returned contains the value T; for the second record returned, the value '2', and
so on. After the execution of the MERGE statement, the content of the relative key data
item indicates the last record returned to the file.

13. PRISAM sequential, indexed, and relative nontransactional files are supported for the
GIVING clause of the MERGE statement. MERGE cannot START and END a PRISAM
transaction. Therefore, PRISAM transactional files cannot be referenced in the GIVING
clause. However, the user can specify a PRISAM transactional file for the output file of
the merge operation by using an OUTPUT PROCEDURE and writing each returned
record to the PRISAM file.

14-8 First Edition

The SORT and MERGE Verbs

14. For PRISAM and MIDASPLUS files, an empty, but already created file is expected for
the output file. Use the corresponding FAU and CREATK utilities to create the file prior
to program execution.

MERGE Example
The following program merges two files, MRGFIL1 and MRGFIL2, using an output
procedure that sends them to the print file YEARLY. An example of linking and execution,
and the sample files follow the program.

IDENTIFICATION DIVISION.
PROGRAM-ID. MERGSAMP.
AUTHOR. W. T. C.
INSTALLATION. PRIME.
DATE-WRITTEN. 14 APRIL 82.
DATE-COMPILED.
REMARKS. TESTING THE MERGE VERB. FILES MUST BE SORTED FIRST!

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FIRST-HALF ASSIGN TO PRIMOS.
SELECT SECOND-HALF ASSIGN TO PRIMOS.
SELECT YEARLY ASSIGN TO PRINTER.
SELECT MERGE-FILE ASSIGN TO PRIMOS.

*
DATA DIVISION.
FILE SECTION.
FD FIRST-HALF

VALUE OF FILE-ID IS 'MRGFILl'
DATA RECORD IS SALES-HISTORY-1.

01 SALES-HISTORY-1.
0 5 D E P T - N O P I C 9 9 9 .
0 5 P R O D - N O P I C 9 (5) .

FD SECOND-HALF
VALUE OF FILE-ID IS 'MRGFIL2'
DATA RECORD IS SALES-HISTORY-2.

01 SALES-HISTORY-2.
0 5 D E P T - N O P I C 9 9 9 .
0 5 P R O D - N O P I C 9 (5) .

FD YEARLY
DATA RECORD IS CUMULATIVE-SALES.

01 CUMULATIVE-SALES.
0 5 D E P T P I C 9 (3) .
0 5 F I L L E R - 1 P I C X (3) .
0 5 P R O D P I C 9 (5) .

SD MERGE-FILE
DATA RECORD IS MERGE-RECORD.

First Edition 14-9

COBOL85 Reference Guide

01 MERGE-RECORD.
0 5 D E PA R T M E N T P I C 9 9 9 .
0 5 P R O D U C T P I C 9 (5) .

*
WORKING-STORAGE SECTION.
01 END-OF-DATA PIC XXX VALUE 'NO ' .
01 PROOF-LIST.

05 DEPT-NO-REPORT PIC 999.
05 PROD-NO-REPORT PIC 9(5).

*
PROCEDURE DIVISION.
START-PARA.

MERGE MERGE-FILE ON ASCENDING KEY DEPARTMENT
USING FIRST-HALF, SECOND-HALF
OUTPUT PROCEDURE IS OUTPUT-PROCEDURE.

STOP RUN.
*
OUTPUT-PROCEDURE SECTION.
CREATE-PROOF-LIST.

OPEN OUTPUT YEARLY.
PERFORM RETURN-DATA.
PERFORM WRITE-DATA UNTIL END-OF-DATA = 'YES'
CLOSE YEARLY.
GO TO END-MERGE.

RETURN-DATA.
RETURN MERGE-FILE INTO PROOF-LIST

AT END
MOVE 'YES' TO END-OF-DATA.

*
WRITE-DATA.

MOVE SPACES TO FILLER-1.
MOVE DEPARTMENT TO DEPT.
MOVE PRODUCT TO PROD.
WRITE CUMULATIVE-SALES.
PERFORM RETURN-DATA.

END-MERGE.
EXIT.

First Input File:
00123576
00376231
00592862

Second Input File:
00263550
00443651
00640166

- >

" *

14-10 First Edition

777e SORT and MERGE Verbs

Compiling, Linking, and Executing: Compile, link, and mn the program with the
following dialog:

OK, COBOL85 MERGE -LISTING
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: MERGE.COBOL8 5]

OK, BIND
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]

LOAD MERGE
LI COBOL85LIB
LI VSRTLI
L I

BIND COMPLETE
: FILE
OK, RESUME MERGE
OK,

Output file (YEARLY):

001 23576
002 63550
003 76231
004 43651
005 92862
006 40166

RELEASE

r
Transfers records to the initial phase of a sort operation, allowing processing of the record
content.

Format
RELEASE record-name [FROM data-name]

Syntax Rules
1. Specify a RELEASE statement only within an input procedure associated with a SORT

statement. Input procedures are described with the SORT statement below.
2. The record-name must be the name of a logical record in the SD entry for the sort file

named in the associated SORT statement. The record-name may be qualified. The data-
name must specify a field capable of holding a record read from an input file (FD entry).
It may be in WORKING-STORAGE.

r
First Edition 14-11

COBOL85 Reference Guide

General Rules

1. The execution of a RELEASE statement causes record-name to be released to the initial
phase of a sort operation.
A RELEASE statement must be executed for each record to be sent to a sort or merge
operation.

2. If the FROM phrase is used, the contents of data-name are moved to record-name, then
the contents of record-name are released to the sort file. Moving takes place according to
the rules for the MOVE statement without the CORRESPONDING phrase.

3. After the execution of the RELEASE statement, the logical record is still available as a
record of other files referenced in the SAME AREA clause, as well as being available to the
file associated with record-name. When control passes from the input procedure, the sort
file consists of all those records placed in it by the execution of RELEASE statements.

4. If a RELEASE statement releases a record associated with an input file, the input file
must have been opened and read.

RETURN
Obtains sorted records from the final phase of a sort operation, or merged records during a
merge.

Format
RETURN file-name RECORD [INTO data-name-1]

AT END imperative-statement-1

[NOT AT END imperative-statement-2]

[END-RETURN]

Syntax Rules
1. file-name must be described by an SD entry in the FILE SECTION of the DATA

DIVISION.
2. data-name must be able to contain a record to be written to an output file.
3. A RETURN statement may be specified only within an output procedure associated with

a SORT or MERGE statement for file-name. Output procedures are defined in SORT
and MERGE statements.

4. The areas associated with data-name and file-name must not be the same storage area.

14-12 First Edition

- >

" >

77)_> SORT and MERGE Verbs

General Rules

1. If more than one record description is associated with file-name, these records
automatically share the same storage area; that is, the area is implicitly redefined. After
the execution of the RETURN statement, any data items that lie beyond the range of the
current record are undefined.

2. When the RETURN statement is executed, the next record from file-name (in the order
of the key) is made available for processing in the record areas associated with the sort
or merge file.
A RETURN statement must be executed for each record to be retrieved from the sort or
merge operation.

3. If the INTO phrase is specified, the current record is moved from the input (file) area to
the area specified by data-name according to the rules for the MOVE statement without
the CORRESPONDING phrase. The implied MOVE does not occur if there is an AT
END condition. Any subscripting or indexing associated with data-name is evaluated
after the record is returned and immediately before it is moved to data-name.

4. When the INTO phrase is used, the data is available in both the input record area and the
data area associated with data-name.

5. If no next logical record exists at the execution of a RETURN statement, the AT END
condition occurs. The contents of the record areas associated with the file are undefined
when that condition occurs. After the execution of the imperative-statement in the AT
END phrase, no RETURN statement may be executed as part of the current output
procedure. Control is transferred to the end of the RETURN statement and the NOT AT
END phrase is ignored, if specified.

6. If an AT END condition does not occur, then after the record is made available and after
processing an INTO phrase, control is transferred to imperative-statement-2, if specified.
Otherwise, control is transferred to the end of the RETURN statement.

7. The END-RETURN clause delimits the scope of the RETURN statement. For more
information, see the section titled Scope Terminators, in Chapter 8.

First Edition 14-13

COBOL85 Reference Guide

SORT
Creates a sort file by executing an input procedure or by transferring records from another
file or files; sorts the records in the sort file on a set of specified keys; and, in the final phase
of the sort operation, makes available each record from the sort file, in sorted order, to an
output procedure or to an output file or files.

Format

c™>t rt r f ruvr f ASCENDING "1 -____, r. , nSORT file-name-1 -j ON -j „ >■ KEY {data-name-1} • •

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

INPUT PROCEDURE IS procedure-name-1 /BBS-^"! procedure-name-2

USING {file-name-2} • . •

OUTPUT PROCEDURE IS procedure-name-3 /I5|gl____*_l \ procedure-name

GIVING {file-name-3} • • •

Syntax Rules
1. SORT statements must not appear in the DECLARATIVES portion of the

PROCEDURE DIVISION or in an input or output procedure associated with a SORT or
MERGE statement. SORT statements, wherever they occur, must not be executed under
the control of an input or output procedure.

2. file-name-1 must be described in an SD entry in the DATA DIVISION. Each file-
name-2 and file-name-3 must be described in a file-description-entry, not in a sort-merge
file-description-entry, in the DATA DIVISION.

3. data-name-1, data-name-2, and so on (KEY data-names) are subject to the following
mles:

• The data items identified by KEY data-names must be described in records
associated with file-name-1.

• KEY data-names may be qualified.
• KEY data-names may not describe variable-length data items, nor may they name

group items that contain variable-occurrence data items. KEY data-names for
variable-length records must be within the fixed portion of the variable-length record.

14-14 First Edition

The SORT and MERGE Verbs

• If file-name-1 has more than one record description, then the data items identified by
KEY data-names need be described in only one of the record descriptions. In other
words, the same character positions referenced by a KEY data-name in one record-
description-entry are taken as the KEY in all records of file-name-1.

• The data items identified by KEY data-names may not contain an OCCURS clause
or be subordinate to an item that contains an OCCURS clause.

4. The procedure-name-1 specifies the first section or paragraph in an input procedure. The
procedure-name-2, if specified, identifies the last section or paragraph of an input
procedure.
Similarly, procedure-name-3 and procedure-name-4 specify an output procedure.

5. The words THRU and THROUGH are equivalent.
6. file-name-2 and file-name-3 may be the same file-name. However, for PRISAM and

MIDASPLUS files, the same physical file may not be used as both input and output files
for the same SORT statement.

7. The logical record size associated with file-name-2 must not be larger than the record
size described for file-name-3.

8. The actual size of the logical record(s) described for file-name-2 (the USING file) may
be different from the actual size of the logical record(s) described for file-name-1. The
restrictions are as follows:

• If file-name-1 contains variable-length records, the size of the records contained in
the USING files must not be less than the smallest record nor larger than the largest
record described for file-name-1.

• If file-name-1 contains fixed-length records, the size of the records contained in the
USING files must not be larger than the largest record described for file-name-1. If
the record(s) described for the USING files are smaller than the records in file-
name-1, the records are left justified, and any unused character positions at the right
end of the record are filled with blanks when the record is released to the sort utility.

9. You can specify a maximum of twenty files in the GIVING clause of the SORT
statement. Exceeding this maximum causes a fatal error. These GIVING files may all be
of different types and record formats.

10. You can specify a maximum of twenty files in the USING clause of the SORT
statement. Exceeding this maximum causes a fatal error. These USING files may be
compressed or uncompressed, fixed-length or variable-length.

11. The actual size of the logical record(s) described for file-name-3 (the GIVING file) may
be different from the actual size of the logical record(s) described for file-name-1. The
restrictions are as follows:

• If file-name-3 contains variable-length records, the size of the records contained in
file-name-1 must not be less than the smallest record nor larger than the largest
record described for file-name-3.

• If file-name-3 contains fixed-length records, the size of the records contained in file-
name-1 must not be larger than the largest record described for file-name-3. If the
record(s) described for file-name-1 are less than the record size specified for the
GIVING file, the records are left justified, and any unused character positions at the
right end of the record are filled with blanks when the record is returned from the
sort utility.

First Edition 14-15

COBOL85 Reference Guide

12. The logical record size associated with file-name-3 may be larger than the largest record
size described for file-name-2. The smaller record is left justified, and any unused
character positions at the right end of the record are filled with blanks.

13. The alphabet-name is a programmer-defined word; define it in the SPECIAL-NAMES
paragraph in the CONFIGURATION SECTION. Specify it as NATIVE, STANDARD-1,
STANDARD-2, or EBCDIC.

General Rules

1. Files referenced in a SORT statement must be closed prior to execution of the sort
operation. They may not be opened except through an input or output procedure, until
the sort is complete.
The SORT statement sorts all records contained in file-name-2. These files are
automatically opened and closed by the sort operation with all implicit functions ^^^
performed, such as the execution of any associated USE procedures, and the setting of
any associated file status codes. The terminating function for all files is performed as if
a CLOSE statement were executed for each file.

2. The execution of any USE procedure must not cause the execution of any statement that
manipulates the files referenced by either the USING or GIVING clauses.

3. If file-name-1 contains only fixed-length records, any record in file-name-2 released to
file-name-1 is left justified, and any unused character positions at the right end of the
record are filled with blanks.

4. The data-names following the word KEY are listed in order of decreasing significance
no matter how they are divided into KEY phrases. For example, data-name-1 is the
major key, data-name-2 is the next most significant key.
• When the ASCENDING phrase is specified, the sorted sequence is from the lowest

key value to the highest key value.
• When the DESCENDING phrase is specified, the sorted sequence is from the highest

key value to the lowest key value.
• The key values are compared according to the mles for comparison of operands in a

relation condition. (See the section titled Conditional Expressions, in Chapter 4.)

5. If the DUPLICATES phrase is specified and the contents of all the key data items
associated with one data record are equal to the contents of the corresponding key data
items associated with one or more other data records, then the order of return of these
records is

• The order of the associated input files as specified in the SORT statement. Within a
given input file the order is that in which the records are accessed from that file.

• The order in which these records are released by an input procedure, when an input
procedure is specified.

If the DUPLICATES phrase is not specified and the contents of all the key data items
associated with one data record are equal to the contents of the corresponding key data
items associated with one or more other data records, then the order of return of these
records is undefined.

14-16 First Edition

7he SORT and MERGE Verbs

6. The COLLATING SEQUENCE IS clause may be used to specify the collating sequence
to be used in the sort. If it is not specified, the PROGRAM COLLATING SEQUENCE
clause of the OBJECT-COMPUTER paragraph is used, if present. The following
examples show the difference that the COLLATING sequence can make.

OK, SLIST COLLATING.DATA
BABC010132780300200
AABC000123456700000
200C020043298765400

If this file is sorted with COLLATING SEQUENCE IS NATIVE or no COLLATING
SEQUENCE clause, the output file is the following:

OK, SL IST F2 .NAT IVE
200C020043298765400
AABC000123456700000
BABC010132780300200

However, if the COLLATING SEQUENCE clause specifies alphabet-name as EBCDIC,
the output file is the following:

OK, SL IST F2 .EBCDIC
AABC000123456700000
BABC010132780300200
200C020043298765400

7. If the files referenced by the USING and GIVING clauses are magnetic tape files, they
may reside on the same multiple-file reel.
USING and GIVING tape files with variable-length record descriptions are supported.

8. No more than one GIVING file may specify a tape file on the same reel.
9. MIDASPLUS and PRISAM indexed files are fully supported for the SORT statement.

This includes support for USING and GIVING files.
If an indexed file is specified in the GIVING clause, the first specification of the data-
name-1 must be associated with an ASCENDING phrase. In addition, the data item
referenced by data-name-1 must occupy the same character positions in its record as the
associated primary key for that file.

10. MIDASPLUS and PRISAM relative files are fuUy supported for the SORT statement.
This includes support for USING and GIVING files.
If a relative file is specified in the USING phrase, the content of the relative key data
item is undefined after the execution of the SORT statement.
If a relative file is specified in the GIVING clause, the relative key data item for the first
record returned contains the value T; for the second record returned, the value '2', and
so on. After the execution of the SORT statement, the content of the relative key data
item indicates the last record returned to the file.

11. If the USING or GIVING clauses specify PRISAM sequential, indexed, or relative files,
these files must be PRISAM nontransactional files.

First Edition 14-17

COBOL85 Reference Guide

SORT cannot START and END a PRISAM transaction. However, if you wish to sort a
PRISAM transactional file, you must use an INPUT PROCEDURE to RELEASE the
records to the sort utility. Additionally, if you wish the sorted records to be written to a
PRISAM transactional file, you must use an OUTPUT PROCEDURE to RETURN the
records from the sort utility.

12. For PRISAM and MIDASPLUS files, an empty, but already created file is expected for
the output file. Use the corresponding FAU and CREATK utilities to create the file prior
to program execution.

Rules for Input Procedures and USING

1. The input procedure must consist of one or more sections or paragraphs that are written
consecutively and do not form a part of any output procedure. In order to transfer
records to file-name-1, the input procedure must include at least one RELEASE
statement. Control must not be passed to the input procedure except when a related
SORT statement is being executed. An example is given at the end of this chapter.
The input procedure can include any procedures needed to select, create, or modify
records, including a READ for the input file, which must first be opened. The range of
the input procedure includes all statements that are executed as a result of a transfer of
control by the CALL, EXIT, GO TO, and PERFORM statements, as well as all
statements in declarative procedures that are executed as a result of the execution of
statements in the range of the input procedure currently being executed. The statements
within the input procedure have two restrictions:

• The range of the input procedure must not cause the execution of any MERGE,
RETURN, or SORT statement.

• The remainder of the PROCEDURE DIVISION must not contain any transfers of
control to points inside the input procedure; GO TO and PERFORM statements in
the remainder of the PROCEDURE DIVISION must not refer to procedure-names
within the input procedure.

2. If an input procedure is specified, control is passed to the input procedure before file- _..
name-1 is sorted by the SORT statement. When control passes the last statement in the
input procedure, the records that have been released to file-name-1 are sorted.

3. If the USING phrase is specified, all the records in the USING file list (file-name-2, and
so on) are automatically transferred to file-name-1. At the time of execution of the
SORT statement, files in the USING list must not be open. For files in the USING list,
the execution of the SORT statement performs the following actions:

• The processing of the file is initiated as if an OPEN statement with the INPUT
phrase were executed.

• The file references are passed to the sort routine, which puts all the records in a
single file. Each record is obtained as if a READ statement with the NEXT and the
AT END phrase were executed.

• The processing of the file is terminated as if a CLOSE statement were executed.

14-18 First Edition

The SORT and MERGE Verbs

Rules for Output Procedures and GIVING

1. The output procedure must consist of one or more sections or paragraphs that are written
consecutively and do not form a part of any input procedure. In order to make sorted
records available for processing, the output procedure must include at least one
RETURN statement. Control must not be passed to the output procedure except when a
related SORT statement is being executed. An example is given with the discussion of
MERGE above.
The output procedure may consist of any procedures needed to select, modify, or copy
the records that are being returned, one at a time in sorted order, from the sort file. Trie
output procedure may include a WRITE statement for the output file, which must first
be opened. The range of the output procedure includes all statements that are executed as
a result of a transfer of control by the CALL, EXIT, GO TO, and PERFORM
statements, as well as all statements in declarative procedures that are executed as a result
of the execution of statements in the range of the output procedure currently being
executed. The procedural statements within the output procedure have two restrictions:

• The range of the output procedure must not cause the execution of any MERGE,
RELEASE, or SORT statement.

• The remainder of the PROCEDURE DIVISION must not contain any transfers of
control to points within the output procedure; GO TO and PERFORM statements in
the remainder of the PROCEDURE DIVISION must not refer to procedure-names
within the output procedure.

2. If an output procedure is specified, control passes to it after file-name-1 has been sorted
by the SORT statement. When control passes the last statement in the output procedure,
control returns to the next executable statement after the SORT statement. Before
entering the output procedure, the sort operation reaches a point at which it can select the
next record in sorted order, when requested. The RETURN statements in the output
procedure are the requests for the next record.

3. If the GIVING phrase is specified, all the sorted records are automatically written io file-
name-3 as the implied output procedure for the SORT statement. At the time of the
execution of the SORT statement, file-name-3 must not be open. For file-name-3, the
execution of the SORT statement performs the following actions:

• Initiates the processing of the file. The initiation is performed as if an OPEN
statement with the OUTPUT phrase were executed.

• Returns the sorted logical records and writes them into the file. The records are
written as if a WRITE statement without any optional phrases were executed.

• Terminates the processing of the file. The termination is performed as if a CLOSE
statement were executed.

4. If file-name-3 contains only fixed-length records, any record in file-name-1 containing
fewer character positions is left justified and padded with blanks at the right end of the
record when the record is returned to file-name-3.

First Edition 14-19

COBOL85 Reference Guide

SORT Example
The following example is a source file for a sample program SAMPLE.SORT.COBOL85.
This example uses a SORT statement with an input procedure. The input procedure edits
records for errors before releasing them to the sort file SORT-WK.
Below the example are

• A sample input file (SEFILE) including one erroneous entry
• A sample dialog for compiling, linking, and mnning the program
• The resulting output file (OUT-SORT)

IDENTIFICATION DIVISION.
P R O G R A M - I D . S R T B U D G T .
A U T H O R . P E G G Y P E C K .
I N S T A L L A T I O N . P R I M E .
DATE-COMPILED.

* *
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-FILE ASSIGN TO PRIMOS,
FILE STATUS IS FILE-STAT.

SELECT OUT-SORT ASSIGN TO PRIMOS.
SELECT SORT-WK ASSIGN TO PRIMOS.

* *
DATA DIVISION.
FILE SECTION.

*
FD IN-FILE,COMPRESSED,

VALUE OF FILE-ID IS 'SEFILE'.
01 ENTRY.

0 5 C O D E - I N P I C X .
0 5 A C C T - I N P I C X (3) .
0 5 F I L L E R P I C X (7 6) .

*
FD OUT-SORT,

RECORD CONTAINS 80 CHARACTERS.
0 1 S O R T O U T P I C X (8 0) .

*
SD SORT-WK,

RECORD CONTAINS 80 CHARACTERS.
01 SORT-REC.

0 5 C O D E - S D P I C X .
0 5 A C C T - S D P I C X (3) .
0 5 F I L L E R P I C X (1 9) .
0 5 C A T - S D P I C X X .
0 5 F I L L E R P I C X (5 5) .

14-20 First Edition

The SORT and MERGE Verbs

*
WORKING-STORAGE SECTION.
7 7 F I L E - S T A T P I C X X .
7 7 N O - M O R E - R E C O R D S P I C X VA L U E ' N ' .

* *
PROCEDURE DIVISION.
MAINLINE SECTION.
000-MAINLINE.

PERFORM 020-SORT-TRANSACTIONS.
STOP RUN.

*
020-SORT-TRANSACTIONS.

SORT SORT-WK ASCENDING KEY CODE-SD,
DESCENDING KEY ACCT-SD,
ASCENDING KEY CAT-SD,
INPUT PROCEDURE IS 030-INPUT-PROC,
GIVING OUT-SORT.

*
030-INPUT-PROC SECTION.
030-BEGIN.

OPEN INPUT IN-FILE.
READ IN-FILE INTO ENTRY,

AT END DISPLAY 'EMPTY FILE'
MOVE 'Y' TO NO-MORE-RECORDS.

PERFORM 035-ERROR-CHECK UNTIL NO-MORE-RECORDS
- 'Y' .

CLOSE IN-FILE.
GO TO 030-END.

035-ERROR-CHECK.
IF ACCT-IN NOT NUMERIC,

DISPLAY '**ERROR: ***',
DISPLAY ENTRY,

ELSE RELEASE SORT-REC FROM ENTRY.
READ IN-FILE INTO ENTRY,

AT END DISPLAY 'END OF FILE' MOVE 'Y'
TO NO-MORE-RECORDS.

030-END.
EXIT.

Inputfile:

2350JOSEPHINE BLOW 00 12345678
2 4 0 0 J O S E F B L O 0 3 1 2 3 4 5 6 7 8
1090JOSEPHINE BLOUGH 06 12345678
1090JOSEPH BLOUGH 07 12345678
1091JOSEPH BLOW 10 12345678
4A75JOSIP BLOUGH 33 12345678
1090JOSE BLOUGH 06 12345678
1091JOSEF BLOUGH 14 12345678
2 4 0 0 J O E B L O W 0 2 1 2 3 4 5 6 7 8
1090JOSEPH BLOUGH 05 12345678

First Edition 14-21

COBOL85 Reference Guide

Compiling, Linking, and Execution:

OK, C0B0L85 SAMPLE.SORT -L
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: SAMPLE.SORT.COBOL85]

OK, BIND -LO SAMPLE. SORT -LI C0B0L85LIB -LI VSRTLI -LI
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
BIND COMPLETE

OK, RESUME SAMPLE.SORT
ERROR: *
4A75JOSIP BLOUGH 33 12345678
END OF FILE
OK,

Sorted Output File (OUT-SORT):

OK, SLIST OUT-SORT
1091JOSEPH BLOW 10 12345678
1091JOSEF BLOUGH 14 12345678
1090JOSEPH BLOUGH 05 12345678
1090JOSEPHINE BLOUGH 06 12345678
1090JOSE BLOUGH 06 12345678
1090JOSEPH BLOUGH 07 12345678
2 4 0 0 J O E B L O W 0 2 1 2 3 4 5 6 7 8
2 4 0 0 J O S E F B L O 0 3 1 2 3 4 5 6 7 8
2350JOSEPHINE BLOW 00 12345678

14-22 First Edition

" >

Source Text Manipulation

This chapter discusses the COPY source text manipulation statement. You can use this
statement to insert and replace source program text during compilation.

COPY

Incorporates COBOL85 source coding from another file into a source program at compile
time. This is a compiler-directing statement.

Format

ropy ffile-name\ S—\ f mrectorv~name\
^^-\ l i teral - l J \ lN J \ l i teral -2 J

REPLACING
(- - pseudo-text-1

J data-name-1I literal-3
[__ reserved-word-1

BY
f== pseudo-text-2
data-name-2

— | literal-4
 ̂reserved- w or d-2

r
r

Syntax Rules
1. A COPY statement can occur anywhere in the source program, in any division where a

character-string or a separator (other than the closing quotation mark) can usually occur,
except within the object of another COPY statement. It is not executed, however, if
found in a comment-entry.

2. The COPY statement must be preceded by a space and terminated by a separator period.
3. OF and IN are interchangeable and mutually exclusive.
4. file-name must be the name of a PRIMOS file containing COBOL85 source code.

First Edition 15-1

COBOL85 Reference Guide

5. literal-1 must contain a PRIMOS filename or a fully qualified pathname, literal-1 can be
partially qualified if used in conjunction with literal-2. literal-2 must be a fully or
partially qualified directory-name, so that concatenating it with literal-1 forms a fully
qualified pathname.

6. If you specify directory-name, it must be the name of the directory that contains file
name.

1. You can specify passwords in literal-1 or literal-2. For example,

COPY 'MYDIR>SUB PSWD>MYFILE\
COPY MYFILE OF 'MYDIR>SUB PS WD'.

8. Files referenced in COPY statements can be located by the COBOL85 compiler based
upon the INCLUDES search rules in effect for your environment. Files that are
referenced as pathnames or with the OF or IN clause are located by those pathnames;
files referenced as simple filenames are located using the PRIMOS search rules facility
to provide the full pathnames. The system default is the current attach point. For more
information see the section, COPY Files and the Search Rules Facility, later in this
chapter.

9. pseudo-text is a literal string with no quotation marks, unless these quotation marks are to
appear in the text, pseudo-text allows quotation marks to be copied.

10. pseudo-text-1 must include at least one text word; pseudo-text-2 can be null.
11. pseudo-text-1 cannot consist entirely of a separator comma or a separator semicolon.
12. Character-strings within pseudo-text-1 and pseudo-text-2 can be continued.
13. reserved-word-1 and reserved-word-2 can be any single COBOL85 word except COPY.

General Rules

1. During compilation, COBOL85 processes all COPY statements before processing the
resultant source program.

2. The COPY statement copies everything in the text file into the COBOL85 source
program.

3. If you do not specify the REPLACING phrase, COBOL85 copies the text unchanged.
If you specify the REPLACING phrase, COBOL85 copies the text and replaces each
properly matched occurrence of pseudo-text-1, data-name-1, literal-3, and reserved-
word-1 in the text by the corresponding pseudo-text-2, data-name-2, literal-4, and
reserved-word-2.

4. For purposes of matching, COBOL85 treats data-name-1, literal-3, and reserved-word-1
as pseudo-text containing only data-name-1, literal-3, and reserved-word-1, respectively.

5. The comparison operation to determine text replacement occurs in the following manner:

• The leftmost text word in the text file that is not a separator comma or a separator
semicolon is the first text word used for comparison. Any text word or space
preceding this text word is copied into the source program. Starting with the first text
word for comparison and the first pseudo-text-1, data-name-1, literal-3, or reserved-
word-1 that you specify in the REPLACING phrase, COBOL85 compares the entire
pseudo-text-1, data-name-1, literal-3, or reserved-word-1 to an equivalent number of
contiguous text words.

15-2 First Edition

Source Text Manipulation

• pseudo-text-1, data-name-1, literal-3, or reserved-word-1 matches the text if, and
only if, the ordered sequence of text words that forms pseudo-text-1, data-name-1,
literal-3, or reserved-word-1 is equal, character for character, to the ordered sequence
of text words. For purposes of matching, each occurrence of a separator comma,
semicolon, or space in pseudo-text-1, data-name-1, literal-3, reserved-word-1, or in
the text is considered a single space. Each sequence of one or more space separators
is considered a single space.

• If no match occurs, the comparison is repeated with each next successive occurrence
of pseudo-text-1, data-name-1, literal-3, or reserved-word-1, if any, in the
REPLACING phrase until either a match is found or there is no successive
occurrence of pseudo-text-1, data-name-1, literal-3, or reserved-word-1.

• When all occurrences of pseudo-text-1, data-name-1, literal-3, or reserved-word-1
have been compared and no match has occurred, the leftmost text word is copied into
the source program. The next successive text word is then considered as the leftmost
text word, and the comparison cycle starts again with the first occurrence of pseudo-
text-1, data-name-1, literal-3, or reserved-word-1.

• Whenever a match occurs between pseudo-text-1, data-name-1, literal-3, or reserved-
word-1 and the text, the corresponding pseudo-text-2, data-name-2, literal-4, or
reserved-word-2 is placed into the source program. The text word immediately
following the rightmost text word that participated in the match is then considered as
the leftmost text word. The comparison cycle starts again with the first occurrence of
pseudo-text-1, data-name-1, literal-3, or reserved-word-1.

• The comparison operation continues until the rightmost text word in the text file has
either participated in a match or been considered as a leftmost text word and
participated in a complete comparison cycle.

6. Comment lines and blank lines occurring in the text file and in pseudo-text-1 are ignored
for purposes of matching; and the sequence of text words in the text file, if any, and in
pseudo-text-1 is determined by the coding rules defined in Chapter 4. Comment lines or
blank lines in pseudo-text-2 are copied into the resultant program unchanged whenever
pseudo-text-2 is placed into the source program as a result of text replacement. A
comment line or blank line in the text file is not copied into the resultant program
unchanged if that comment line or blank line appears within the sequence of text words
that match pseudo-text-1.

1. Debugging lines are permitted within the text file and pseudo-text. Text words within a
debugging line participate in the matching rules as if the 'D' or 'd' did not appear in the
indicator area.

8. COBOL85 cannot independently determine the syntactic correctness of the text file.
Except for COPY statements, COBOL85 cannot determine the syntactic correctness of
the program until it first processes all COPY statements.

9. Each text word copied from the text file but not replaced is copied so as to start in the
same area of the line in the resultant program as it begins in the line within the text file.
However, if a text word copied from the text file begins in Area A but follows another
text word that also begins in Area A of the same line, and if replacement of a preceding
text word in the line by replacement text of greater length occurs, the following text
word begins in Area B if it cannot begin in Area A. Each text word in pseudo-text-2 that
is to be placed into the resultant program begins in the same area of the resultant

First Edition 15-3

COBOL85 Reference Guide

program as it appears in pseudo-text-2. Each data-name-2, literal-4, or reserved-word-2
that is to be placed into the resultant program begins in the same area of the resultant
program as the leftmost text word that participated in the match would appear if it had
not been replaced.
The text in the text file must conform to the coding rules defined in Chapter 4.
If additional lines are introduced into the source program as a result of a COPY
statement, each text word introduced appears on a debugging line if the COPY statement
begins on a debugging line or if the text word being introduced appears on a debugging
line in the text file. In these cases, only those text words that are specified on debugging
lines within pseudo-text-2 appear on debugging lines in the resultant program. If any
literal specified as literal-2 or within pseudo-text-2 or the text file is too long to be
accommodated on a single line without continuation to another line in the resultant
program, and the literal is not being placed on a debugging line, additional continuation
lines are introduced, which contain the remainder of the literal. If replacement requires
the continued literal to be continued on a debugging line, the program is in error.

10. Text words inserted into the source program as a result of the REPLACING phrase are
placed in the source program according to the coding mles defined in Chapter 4. When
copying text words of pseudo-text-2 into the source program, you can introduce
additional spaces only between text words that already have an existing space between
them (including the assumed space between source lines).

11. If additional lines are introduced into the source program as a result of the processing of
COPY statements, the indicator area of the introduced lines contains the same character
as the line on which the text being replaced begins, unless that line contains a hyphen, in
which case the introduced line contains a space. If a literal is continued onto an
introduced line that is not a debugging line, a hyphen is placed in the indicator area.

Examples
In the following example, the first and second COPY statements copy files that are
referenced by simple filenames. The third and fourth COPY statements copy files contained
in a directory named MYDIR. The fifth COPY statement uses a complete pathname. The last
two COPY statements contain a directory name and a filename with a period. Because the
period has special significance in COBOL85, enclose the entry in quotation marks to avoid
errors.

FILE-CONTROL. COPY file-name-1.
DATA DIVISION.
FILE SECTION.
COPY file-name-2.
FD MASTER-FILE COPY file-name-3 OF MYDIR.
01 MASTER-RECORD. COPY 'my.file' IN MYDIR.
01 HEADER-RECORD. COPY "MYDIR>COPYBOOKS>file-name-4" .
PARAGRAPH-NAME.
COPY file-name-5 IN 'ANNE.F'.
COPY "init.ins.COBOL85".

15-4 First Edition

Source Text Manipulation

The following example is an excerpt from DATA DIVISION coding in a source program.

01 MASTER-DESCRIPTION. COPY MASDES
REPLACING ==03== BY ==0 5==

==PIC X(15)== BY ==PIC X(20)==.
01 EMPLOYMENT-HISTORY.

The file MASDES must not contain the 01 MASTER-DESCRIPTION entry; it can have the
following format:

0 3 BADGE-NO PIC 9(5).
0 3 NAME.

10 LAST-NAME PICX(15).
10 FIRST-NAME PICX(15).

After compilation, the listing file includes the following:

60
61
62 01 MASTER-DESCRIPTION. COPY MASDES
6 3 R E P L A C I N G = = 0 3 = = B Y = = 0 5 = =
6 4 = = P I C X (1 5) = = B Y = = P I C X (2 0) = =

< 1> 05 BADGE-NO PIC 9(5).
< 2 > 0 5 N A M E .
< 3 > 1 0 L A S T- N A M E P I C X (2 0) .
< 4 > 1 0 F I R S T- N A M E P I C X (2 0) .

65 01 EMPLOYMENT-HISTORY.
66
67

In this example, the COPY statement part of lines 62-64 is a comment only. Line numbering
of the inserted text is independent of the line numbers of the source.

COPY Files and the Search Rules Facility
The PRIMOS search rules facility enables you to establish an INCLUDES search list. An
INCLUDES search list is a list of directories that are to be searched for a file whenever a
COPY statement is executed. (Although there are several kinds of search lists, this section
explains only the INCLUDES search list. For complete information about the PRIMOS
search rules facility, see the Advanced Programmer's Guide, Volume II.)
When you specify a file in a COPY statement, you must ordinarily give as much of the file
pathname as PRIMOS needs to locate the file. If you use COPY files often, and if the files
are kept in a number of different directories, keeping track of the file pathnames can be
difficult. Now, however, you can locate COPY files by supplying only a filename and using
the search rules facility to provide the full pathname.

Establishing Search Rules: To establish search rules for COPY files, perform the
following steps:

1. Create a template file called

[yourchoice.]INCLUDES.SR
First Edition 15-5

COBOL85 Reference Guide

This file should contain a list of the pathnames of the directories that contain your
COPY files. For example, you might create a file called MY.INCLUDES.SR that
contains the following directory names:

<SYS l>MASTER_DrR>INSERT_FILES
<SYS2>MYUFD>COPYBOOKS

2. Activate the template file by using the SET_SEARCH_RULES command. For
example, if your file is named MY.INCLUDES.SR, type

OK, SSR MY.INCLUDE$

This command sets the INCLUDES search list for your process. This search list may
contain system search rules and administrator search rules in addition to the rules you
specified in MY.INCLUDES.SR.

When you give the SSR command shown in step 2, PRIMOS copies the contents of
MY.INCLUDES.SR into your INCLUDES search list. If you have no special system or
administrator search mles, your INCLUDES search list appears as follows when you give the
LIST_SEARCH_RULES command:

List: INCLUDE$
Pathname of template: <MYSYS>MYUFD>COBOL>MY.INCLUDE$.SR

[home_dir]
<SYS1>MASTER_DIR>INSERT_FILES
<SYS2>MYUFD>COPYBOOKS

[home_dir], your current attach point, is the system default. It is always the first directory
searched, unless you remove it from the list or change the order of evaluation by using the
-NO_SYSTEM option of the SSR command. Additional search mles, established as system-
wide defaults by your System Administrator, may also appear at the beginning of your
INCLUDES search list.
The SET_SEARCH_RULES and LIST_SEARCH_RULES commands are described in the
PRIMOS Commands Reference Guide. For more information about establishing search mles,
see the Advanced Programmer's Guide, Volume II.

Using Search Rules: Once you have set the search list, any COPY statement in a
program can reference just the filename rather than the full pathname of the file. PRIMOS
then searches the contents of the directories in the INCLUDES search list for the filename
specified in the COPY statement. If PRIMOS finds the file, it stops searching and returns the
full pathname of the file to the compiler. The compiler then uses this pathname to locate the
file and inserts its contents into the source program.

15-6 First Edition

Appendices

COBOL85 Formats

This appendix contains formats for all IDENTIFICATION DIVISION, ENVIRONMENT
DIVISION, and DATA DIVISION entries. It also contains formats for all PROCEDURE
DIVISION verbs. Within each division the formats are listed in alphabetical order.

IDENTIFICATION DIVISION

(ÎDENTIFICATION DIVISION.
l ID DIVISION.

PROGRAM-ID. program-name.

[AUTHOR, [comment-entry] • • •]

[INSTALLATION, [comment-entry] • • •]

[DATE-WRITTEN, [comment-entry] • • •]

[DATE-COMPILED, [comment-entry] • • •

[SECURITY, [comment-entry] • • •]

[REMARKS, [comment-entry] • • -1

First Edition A-1

COBOL85 Reference Guide

ENVIRONMENT DIVISION
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SOURCE-COMPUTER, [computer-name.]]

["OBJECT-COMPUTER, [computer-name] "|
\ _ _ [o b j e c t - c o m p u t e r - e n t r y] . j
["SPECIAL-NAMES.
_[special-names-entry] ...]
INPUT-OUTPUT SECTION.

["FILE-CONTROL. ~]
_{file-control-entry} • • .J

>-CONTROL.ri-o-(
\ j i - o -control-entry].

- >

I-O-CONTROL
I-O-CONTROL.

SAME
RECORD
SORT
SORT-MERGE

AREA FOR file-name-1, {file-name-2}

RERUN [ON file-name-1]
c

EVERY
END OF

> OF file-name-3
fREEL\
\UNIT J

integer-4 RECORDS
integer-5 CLOCK-UNITS
condition-name

[MULTIPLE FILE TAPE CONTAINS file-name-4
[POSITION integer-6]
[file-name-5 [POSITION integer-7]] ...]..

A-2 First Edition

COBOL85 Formats

OBJECT-COMPUTER
OBJECT-COMPUTER, [computer-name]

rWORDS
, MEMORY SIZE integer 1 CHARACTERS

[MODULES

, PROGRAM COLLATING SEQUENCE IS alphabet-name-1]

, SEGMENT-LIMIT IS segment-number}.

^ S E L E C T

r
-

Format 1
SELECT [OPTIONALl file-name-1

[reserve /^^-/[areas]]
[[ORGANIZATION IS1 SEQUENTIAL]

[ACCESS MODE IS SEQUENTIAL]

[FILE STATUS IS data-name-1].

Format 2
SELECT [OPTIONAL] file-name-1

4SgHTO{J^--}
[reserve fa/^/[^j]
[ORGANIZATION IS] RELATIVE

rSEQUENTIAL [, RELATIVE KEY IS data-name-l]
ACCESS MODE IS < f"RANDOM \

M DYNAMIC J , RELATIVE KEY IS data-name-1

[FILE STATUS IS data-name-2].

First Edition A-3

COBOL85 Reference Guide

Format 3
SELECT [OPTIONAL] file-name-1

ASSIGN TO f*^-™"*0
\ l i teral- l J

5 ! *^ ' " ' ^ - ' [a reas]]
[ORGANIZATION IS] INDEXED

f SEQUENTIALaccess mode is < random
[dynamic

RECORD KEY IS data-name-1

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

[FILE STATUS IS data-name-3].

SPECIAL-NAMES
SPECIAL-NAMES.

[CONSOLE IS mnemonic-name-1] .. .

switch-name [IS mnemonic-name-2]
TON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2] \ '

~10"FF STATUS IS condition-name-2 "[Oft STATUS IS condition-name-1] f

ALPHABET alphabet-name-1 IS
fSTANDARD-r
STANDARD^
NATIVE
EBCDIC

CLASS class-name-1 IS \ lUeral-1 fTHROUGH1
I Thru j literal-2

[CURRENCY SIGN IS literal-3]

[DECIMAL-POINT IS COMMA].

A-4 First Edition

COBOL85 Formats

SOURCE-COMPUTER
SOURCE-COMPUTER, [computer-name [WITH DEBUGGING MODE].]

DATA DIVISION
DATA DIVISION.

"FILE SECTION.

'file-description-entry, j
[record-description-entry] • • • J " "

rsort-merge-file-description-entry.~\
I {record-description-entry} • • • J

WORKING-STORAGE SECTION.

Cle vel- 77-data-description-entry~]data-description-entry J"

'LINKAGE SECTION.

[level-77-data-description-entry~\data-description-entry J'

BLANK
BLANK WHEN ZERO

BLOCK

, ^^, • ■, f RECORDS "1BLOCK CONTAINS [integer-1 TO] integer-2 1 CHARACTERS J

r

CODE-SET
CODE-SET IS alphabet-name

First Edition A-5

COBOL85 Reference Guide

COMPRESSED/UNCOMPRESSED

ittw, ~ ["COMPRESSED 1 "FDfde-name [{UNC0MPRESSED}j

data-name or FILLER

Fdata-name~\
Lfiller J

DATA RECORDS

nATA /RECORD IS ^ J _ r ,^^ 1 RECORDS ARE \data-na™-* I data-name-2] . . .

EXTERNAL
IS EXTERNAL

A-£> F/irsf Edition

COBOL85 Formats

f COMPRESSED \"M UNCOMPRESSED/J

file-description-entry

FD file-name

[; IS EXTERNAL]

[r R E C O R D S ^ 1 I
; BLOCK CONTAINS [integer-1 TO] integer-2 -I CHARACTERS J

[; CODE-SET IS alphabet-name]

[« MIA {|miSARE} data-name-1 [, data-name-2] ...]

r t arpi fRECQRP IS 1 f STANDARD^ "II j LABfcL ^RECORDS ARE J \ OMITTED J J

{CONTAINS integer-3 CHARACTERS

IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]
CONTAINS integer-6 TO integer-7 CHARACTERS
IS NOT VARYING IN SIZE

[; RECORDING MODE IS {F, U, S, V}]

r [, M . M I » { S » ' } .]
[recor d-description-entry]

FILE SECTION
FILE SECTION.

[file-description-entry, {record-description-entry} • • • 1sort-merge-file-description-entry. {record-description-entry} • • «J

*

First Edition A-7

COBOL85 Reference Guide

LABEL RECORDS

I ARFI fRECQRD IS I fSTANDARD^
1 RECORDS ARE J \ OMITTED J

level-number
level-number

LINKAGE SECTION
LINKAGE SECTION.

V" level-77-description-entry~\
_record-description-entry J

OCCURS
Format 1
OCCURS integer-2 TIMES

f f A S C E N D I N G 1 _ _ _ _ _ _ _ . „ , 1
1 DESCENDING f data-name-2 [, data-name-3] • • •

[INDEXED BY index-name-1 [, index-name-2] ... I

Format 2
OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

\ f ASCENDING "1 ______ TO , „ r "I
1 DESCENDING I data-name-2 [, data-name-3] • • •

I fASCENDING "1
M DESCENDING J

[INDEXED BY index-name-1 [, index-name-2] . . •]

PICTURE

fPICTURE^l
\ P I C J IS character-string

A-8 First Edition

COBOL85 Formats

record-description-entry

r

-

Format 1
, , . [~data-name-I~]level-number ^FILLER J

[; BLANK WHEN ZERO]

[; IS EXTERNAL]

[. {^SSSJJ. rightJ

rinteger-1 TO integer-2 TIMES DEPENDING ON data-name-2\; O C C U R S ^ / n / g g g / . . 2 t i m e s J

[ca key is ̂ *™3 [' a*— ̂•••]•••
L[INDEXED BY index-name-1 [, index-name-2] • • • 1

r.|ppjREjISc/,aracter.s/„.ngj
[; REDEFINES data-name-5]

I"; [SIGN IS] {tr^^} [SEPARATE CHARACTER]

P. fSYN'I ' ISYN'
SYNCHRONIZED^ ["LEFT "| j

j LrightJ J

; [USAGE IS] <^

BINARY
COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3
DISPLAY
INDEX
PACKED-DECIMAL

[; VALUE IS literal]

First Edition A-9

COBOL85 Reference Guide

Format 2

66 data-name-1 ; RENAMES data-name-2

Format 3

fTHROUGHl . , -~|data-name-3
LT H R U J

f VALUE IS 1 ..„ , , f fTHBOUGHl ,188 condition-name-, {^qjesare } lUeraU1 [\thRU J '""""J

RECORD
Format 1
RECORD CONTAINS integer-1 CHARACTERS

Format 2
RECORD IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

Format 3
RECORD CONTAINS integer-4 TO integer-5 CHARACTERS

Format 4
RECORD IS NOT VARYING IN SIZE

RECORDING MODE
RECORDING MODE IS (F, U, S, V}

REDEFINES

level-number |S^f ^'H U REDEFINES data-name-2]

A-10 First Edition

COBOL85 Formats

RENAMES
f " T H R O I I C H ~ l 1

66 data-name-1 ; RENAMES data-name-2 ■< THRlJ Vdata-name-3

sort-merge-file-description-entry
SD file-name-1

RECORD <̂

r CONTAINS integer-1 CHARACTERS

IS VARYING IN SIZE [[FROM integer-2] [TO integer-3] CHARACTERS]

CONTAINS integer-4 TO integer-5 CHARACTERS

IS NOT VARYING IN SIZE

I"™-™ fRECORDIS "1,. , 7l 1
[5 5 ? _ I t s c c r p s A R E j 4 * » — » J > • • ■ J

r SIGN

[SIGN IS] {tr̂ uNg} [SEPARATE CHARACTER]

SYNCHRONIZED

f SYNCHRONIZED 1 ["LEFT "1
\ S Y N C j L k I G H t J

r
r F/rsf Edition A-11

COBOL85 Reference Guide

USAGE

VALUE

[USAGE IS] <

(BINARY
COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3
DISPLAY
INDEX

L PACKED-DECIMAL

Format 1
VALUE IS literal

Format 2

f VALUE IS 1 ,. .-["("THROUGH 1 "1
î LUES ARE } hteraU1 [{THRU \ *««J

[•"-"[{s^}*-"'
VALUE OF FILE-ID

VALUE OF FILE-ID IS Sdata-™™-3\
\hteral-2 J

WORKING-STORAGE SECTION
WORKING-STORAGE SECTION.

Vie vel-77-description-entry~~\
_record-description-entry J * '

" >

A-12 First Edition

COBOL85 Formats

PROCEDURE DIVISION
PROCEDURE DIVISION [USING data-name-1 [, data-name-2] • • • [data-name-64]]

DECLARATIVES.
J section-name SECTION [segment-number]. USE-sentence
\[paragraph-name. [sentence] .••]•••

END DECLARATIVES.

[section-name SECTION [segment-number].]
f[paragraph-name, [sentence] •••]•• O
\ [s e n t e n c e] • • • j

■ }

'

ACCEPT

ADD

Format 1
ACCEPT data-name [FROM mnemonic-name]

Format 2

rpAnn
ACCEPT data-name FROM J DAY I

[timeJ

Format 1

{ data-name-1"
literal-1
arith-expr-1

, data-name-2
, literal-2

|_, arith-expr-2 J

TO data-name-3 [ROUNDED] [, data-name-n [ROUNDED]]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

r
r First Edition A-13

COBOL85 Reference Guide

Format 2

ALTER

CALL

(data-name-1'} |~, data-name-2
ADD J. literal-1 I , literal-2

L arith-expr-1 J _, arith-expr-2 _ {data-name-3'
literal-3
arith-expr-3.

GIVING {data-name-4 [ROUNDED]} [, data-name-n [ROUNDED]] • • •

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

Format 3

Ann fCORRESPONDING1 _ ,-«-._.ADD -j CQRR >- data-name-1 TO data-name-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-ADD]

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

[, procedure-name-3 TO [PROCEED TO] procedure-name-4] • . •

r<A¥T fdata-name-1'"1 ,.--,„„- ,CALL -j /toflW j- [USING data-name-2 [, data-name-3] • • •]

[ON OVERFLOW imperative-statement-1]

[END-CALL]

CANCEL

CANCEL f Mentifier-1~\ [~, identifier-2~\
\literal-l J |_, //tera/-2 J

A-7 4 F/fsf Edition

" >

COBOL85 Formats

CLOSE
Format 1
CLOSE file-name-1 [, file-name-2] , . .

Format 2

REEL
CLOSE <{ file-name-1 UNIT

WITH NO REWIND

COMPUTE
Format 1
COMPUTE data-name-1 [ROUNDED] [, data-name-2 [ROUNDED]] • • • = arith-expr

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-COMPUTE]

Format 2

COMPUTE -T^oESPQNDINGl data-name-1 [ROUNDED] = data-name-2—————— (__ LOR K J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-COMPUTE]

CONTINUE
CONTINUE

First Edition A-15

C0B0L85 Reference Guide

COPY

COPY JfHe'name\ I «T_2__\ Sdirectory-name\ |
\literal-l J |_\IN J \//tera/-2 >J

REPLACING
f= = pseudo-text-1
J data-name-1

 ̂reserved- w or d-1 {= = pseudo-text-2

data-name-2
literal-4
reserved-word-2

DECLARATIVES
DECLARATIVES.
f section-name SECTION [segment-number]. USE-sentence.
\[paragraph-name. [sentence]...]...

END DECLARATIVES

DELETE
DELETE file-name RECORD

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-DELETE]

DISPLAY

DISPLAY
{data-name-1literal-1 K, data-name-2~\, literal-2 J [UPON mnemonic-name]

[[WITH] NO ADVANCING]

A-16 First Edition

COBOL85 Formats

DIVIDE
Format 1

{ data-name-l^\
literal-1 > INTO data-name-2 [ROUNDED] [, data-name-3 [ROUNDED]]
arith-expr-1 J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 2
fdata-name-l~\ ctktC)^ f data-name-2']

DIVIDE 4 literal-1 j> *j ^-^ j- -j literal-2 V
^arith-expr-1 J ^— J ^arith-expr-2 J

GIVING data-name-3 [ROUNDED] [, data-name-4 [ROUNDED]]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

Format 3

r C d a t a - n a m e - 1 '] c ™ t c i ^ (d a t a - n a m e - 2 '
DIVIDE i literal-1 V \ ^^ V < literal-2

\^arith-expr-l J *- ^ \^arith-expr-2

GIVING data-name-3 [ROUNDED]

REMAINDER data-name-4

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

First Edition A-17

COBOL85 Reference Guide

Format 4

DIVIDE {g^ESPON-PI^} iata-nan,,! {££2} ***** [ROUNDED,

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-DIVIDE]

EJECT
EJECT

ENTER
ENTER language-name [routine-name].

EXHIBIT

EXHIBIT {[NAMED] data-name} ' ' '

EXIT
EXIT.

EXIT PROGRAM
EXIT PROGRAM.

GOBACK
GOBACK

A-18 First Edition

GOTO

COBOL85 Formats

Format 1
GO TO [procedure-name]

Format 2
GOTO procedure-name-1 [, procedure-name-2] • • • [, procedure-name-n]

DEPENDING ON
{data-name\arith-expr J

' IF

IF CORRESPONDING condition-1 [THEN] f statement-1
I NEXTSENTENCE/

r
f ELSE {statement-2} • • • [END-IF]

OTHERWISE {statement-2} • • • [END-IF]
< ELSE NEXT SENTENCE

OTHERWISE NEXT SENTENCE
END-IF

r
INSPECT

Format 1
INSPECT data-name-1 TALLYING

I _f____I_ 1 f data-name-3
<J 1 LEADINdata-name-2 FOR \ <j [LEADING f \ttteral
[CHARACTERS rJ}}[{! } » - «]

r
r

Format 2
INSPECT data-name-1 REPLACING

CHARACTERS BY
{data-name-6~\literal-4 J (BEFORE-, IMTIAJL C data-name-7^\ A F T E R j \ _ . * - _ . - 5 J

IeeTdingI Ut^'TT"
I FIRST J ll*""-"

'^1 uv f data-nameS~\
J 21 ||_„«/^ j" { l l f } ' ^ " ' " 7 }

F/'rsf Edition A-19

COBOL85 Reference Guide

Format 3
INSPECT data-name-1 TALLYING

f 4—_ra \\m>m} {"J}1 [{=} _«__. {S3T^]1 [[C H A R A C T E R S J L J

REPLACING

char.ctchs by fi?rr*\- f-fss^i -m™. .f^r'-7}]1=7 j Lis__rJ- mnL w^
{§§3__} {{.rr*} 21 {_rr*} [{if} ™™l {£"}

MERGE

MERGE flle-name-1 ON {defending} KEY ia,a-mme-1 l> *"«-»'""«-2]

[«{ss} key *-«-*1 data-'",m ̂•••]•••
[COLLATING SEQUENCE IS alphabet-name]

USING file-name-2, file-name-3 [, file-name-4] • • •

f , r (" T H R O U G H 1 . , " |
OUTPUT PROCEDURE IS procedure-name-1 < thru f procedure-name-2

GIVING file-name-5 [, file-name-6] • • •

MOVE

Format 1

{ data-name-1 ~\
literal > TO data-name-2 [ROUNDED] [, data-name-3 [ROUNDED]]
arith-expr j

A-20 First Edition

COBOL85 Formats

Format 2

MA1-, /"CORRESPONDING "1 - _ , _-«rt . . . rr>r»TTMnrrmMOVE -j n ^ data-name-1 TO data-name-2 [ROUNDED]

MULTIPLY

Format 1
Cdata-name-l^\

MULTIPLY < literal-1 >BY data-name-2 [ROUNDED] [, data-name-3 [ROUNDED]]
[arith-expr-l J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 2
C data-name-l~\ Cdata-name-2^

MULTIPLY -I literal-1 V BY < literal-2 V
[^ arith-expr-1 J [^ arith-expr-2 J

GIVING data-name-3 [ROUNDED] [, data-name-4 [ROUNDED] • • •

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-MULTIPLY]

Format 3
MtnTTmv ("CORRESPONDING^ , t . _v . t , romntmimiMULTIPLY < Vdata-name-1 BY data-name-2 [ROUNDED]

l ^ C U K K J

(ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

I END-MULTIPLY]

First Edition A-21

C0B0L8S Reference Guide

NOTE

OPEN

NOTE comment-entry.

Format 1
f INPUT file-name-1 [, file-name-2]

OPEN < QUTPUT fHe-name-3 [, file-name-4]^ l-O file-name-5 [, file-name-6]
EXTEND file-name-7 [, file-name-8]

Format 2
f INPUT file-name-1 [, file-name-2]

OPEN -j OUTPUT file-name-3 [, file-name-4]
[l-O file-name-5 [, file-name-6]

Format 3

flNPUT ^file-name-1 [WITH NO REWIND]! • • •OPEN
[OUTPUT {Jile-name-2 [WITH NO REWIND] > • • •

PERFORM
Format 1

PERFORM ("THROTICH~l
procedure-name-1 A TH f- procedure-name-2

[imperative-statement-1 END-PERFORM]

Format 2

PERFORM . T f f THROUGH ~|procedure-name-1 -j j- procedure-name-2

(integer ~]
<j data-name-1 > TIMES
[arith-expr-1 J

[imperative-statement-1 END-PERFORM]

/A-_?2 F/rsf Erf/f/bn

" >

COBOL85 Formats

r

Format 3

PERFORM . I " (" T H R O U G H ^ , "
procedure-name-1 < THR., J- procedure-name-2

UNTIL condition-1

[imperative-statement-1 END-PERFORM]

Format 4

PERFORM procedure-name-1 ("THROUGH
\ J H R U procedure-name-2

VARYING /**•«-»*■' 1 from
\jndex-name-l J

{data-name-3

index-name-2
literal-1
arith-expr-1

{data-name-4~\
literal-2 V UNTIL condition-1
arith-expr-2 J

AFTER f*Fmm*-\ FROM
\index-name-3y

{data-name-6

index-name-4
literal-3
arith-expr-2

fdata-name-7'}BY < literal-4 > UNTIL condition-2
L arith-expr-4 J

[imperative-statement-1 END-PEFORM]

r F/rsf Edition A-23

COBOL85 Reference Guide

READ

Format 1
READ file-name RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 2
READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement-1]

[NOT AT END imperative-statement-2]

[END-READ]

Format 3
READ file-name RECORD [INTO data-name-1]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

Format 4
READ file-name RECORD [INTO data-name-1]

[KEY IS data-name-2]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-READ]

READY TRACE
READY TRACE.

A-24 First Edition

' >

COBOL85 Formats

RELEASE
RELEASE record-name [FROM data-name]

RESET TRACE
RESET TRACE.

RETURN

r RETURN file-name RECORD [INTO data-name-1]

AT END imperative-statement-1

[NOT AT END imperative-statement-2]

[END-RETURN]

REWRITE

r

Format 1
REWRITE record-name [FROM data-name]

[END-REWRITE]

Format 2
REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-REWRITE]

r
First Edition A-25

COBOL85 Reference Guide

SEARCH --

Format 1

SEARCH data-name-1 fvARYING f data-name-2 \1I [^ i n d e x - n a m e - 1 J

[AT END imperative-statement-1]

{„„„-., fimperative-statement-2~] \
WHEN MM {^XT SENTENCE } j • ' •

[END-SEARCH]

Format 2
SEARCH ALL data-name-1 [AT END imperative-statement-1]

WHEN data-name

condition-name-1

, f IS EQUAL TO X Iff™-
1 is - — f I nteral'1

AND
IS EQUAL TO ~l fda<a.name-5~1 «j literal-2

[arith-expr-2
condition-name-2

data-name-4 «j _ ~"~ ""' W literal-2

{imperative-statement-2'\NEXT SENTENCE J

SEEK

[END-SEARCH]

SEEK file-name RECORD

A-26 First Edition

COBOL85 Formats

r
SET

SKIP

SORT

r
r

Format 1

findex-name-1 [, index-name-2]SET
\data-name-l [, data-name-2]

{index-name-3~\

data-name-3 I
integer-1 f
arith-expr-1 J

Format 2

("UP BY 1 f data-name-4'SET index-name-4 [, index-name-5] • • • < 7^*^ nv i i *nteSer'2
^ J (^an7/7-ex/?r-2

Format 3

SET J {mnemonic-name-1} • • • TO ^§pL| [• • *«

SKIP/i

« _ _ _ _ / * — * » { O N | g S | K E Y { , * , * , _ / } ■ ■

[WITH DUPLICATES IN ORDER]

[COLLATING SEQUENCE IS alphabet-name-1]

INPUT PROCEDURE IS procedure-name-1 ||™^UGH| procedure-name

USING {file-name-2} • • •

OUTPUT PROCEDURE IS proc^^./iam^J |{™^UGHj proc^w^-nam^l

GIVING {file-name-3} • • •

F/rsf Edition A-27

COBOL85 Reference Guide

START

START file-name KEY IS <̂

NOT LESS THAN OR EQUAL TO
NOT <=
GREATER THAN OR EQUAL TO
>=
EQUAL TO
GREATER THAN

NOT LESS THAN
NOT<

> data-name

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]
" >

[END-START]

STOP

SSEflS}

STRING

fdata-name-1siR,Nti iŝ r'}[:«:data-name-2
literal-2 {data-name-3'

literal-3
SIZE " >

Jdata-name-4\ |~, d<9 \literal-4 J |_>#
data-name-5
literal-5] C d a t a - n a m e - 6 '

. . . DELIMITED BY <| //tera/-tf
[size

INTO data-name-7 [WITH POINTER data-name-8]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING]

,4-25 First Edition

COBOL85 Formats

SUBTRACT

Format 1

{data-name-l^\ ["*, data-name-2
literal-1 V , literal-2
arith-expr-1 J _, arith-expr-2 _

FROM data-name-3 [ROUNDED] [, data-name-n [ROUNDED]]

r
[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 2

{data-name-1
literal-1
arith-expr-1

, data-name-2"
, literal-2

[_, arith-expr-2

{data-name-3'}
literal-3 \ GIVING data-name-6 [ROUNDED] [, data-name-7 [ROUNDED]]
arith-expr-3 J

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

Format 3

oTi.>™Ar-r ["CORRESPONDING~l . . .S U B T R A C T - j > d a t a - n a m e - 1

FROM data-name-2 [ROUNDED]

[ON SIZE ERROR imperative-statement-1]

[NOT ON SIZE ERROR imperative-statement-2]

[END-SUBTRACT]

r
r F/rsf Erf/f/bn A-29

COBOL85 Reference Guide

UNSTRING

USE

UNSTRING data-name-1

[DEUMITEDBYtALL]^—^[.ORlAjX, {ZZ^}} '
INTO data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

[, data-name-7 [, DELIMITER IN data-name-8] [, COUNT IN data-name-9]] • • •

[WITH POINTER data-name-10] [TALLYING IN data-name-11]

[ON OVERFLOW imperative-statement-1]

[NOT ON OVERFLOW imperative-statement-2]

[END-STRING]

("EXCEPTIONS
Cfile-name-1 [, file-name-2]

INPUT
USE AFTER STANDARD |ERRqR j» PROCEDURE ON ^ OUTPUT

EXTEND

WRITE

Format 1
WRITE record-name [FROM data-name-1]

[fdata-name-2\ ("LINE "|\
{bSe} ADVANCING <| \knteger J LlinesJ/

PAGE

[END-WRITE]

A-30 First Edition

COBOL85 Formats

r

r

r

Format 2
WRITE record-name [FROM data-name]

[INVALID KEY imperative-statement-1]

[NOT INVALID KEY imperative-statement-2]

[END-WRITE]

Format 3
WRITE record-name [FROM data-name-1]

[END-WRITE]

First Edition A-31

Reference Tables

The following tables are included in Appendix B:

• COBOL85 Symbols (Table B-l)
• COBOL85 Reserved Words (Table B-2)
• Prime Extended Character Set (Table B-3)
• Standard-1 ASCII Character Set (Table B-4)
• Standard-2 ASCII Character Set (Table B-5)
• EBCDIC Character Set and Collating Sequence (Table B-6)
• Availability of a File (Table B-7)
• Permissible Input-Output Statements After OPEN Options and Access Modes (Table B-8)
• Hexadecimal and Decimal Conversion Table (Table B-9)
• Octal and Decimal Conversion Table (Table B-10)
• Hexadecimal Addition Table (Table B-ll)
• Decimal Data Type (Overpunch Symbols) (Table B-12)

First Edition B-1

COBOL85 Reference Guide

TABLE B-1
COBOL85 Symbols

Symbol Functions

Punctuation Symbols — Used to punctuate program entries

Period

Comma

Semicolon

Quotation marks

Apostrophe or
single quote mark

Pseudo delimiter

1. Terminates entries. Usually required.
2. Signifies the decimal point in numeric literals, or the comma

in European notation.

1. Separates operands or clauses in a series. Optional.
2. European notation for the decimal point in numeric literals.

Separates operands or clauses in a series. Optional.

Encloses nonnumeric literals.

Prime Extension: Encloses nonnumeric literals.

Pseudo text delimiter used as a separator in COPY
REPLACING statements.

Coding Symbols — Directives to the compiler

Asterisk

Slash

Backslash

Hyphen

or D

Denotes an explanatory comment line when inserted in column
7 of a source program line.

Denotes a skip to the top of a new page during a source listing,
when coded in column 7 of a source program line.

Denotes the beginning of a nonnumeric literal mnemonic that
corresponds to a character value in the Prime ECS chararacter

Denotes a continuation line when coded in column 7 of a
source program line.

When coded in column 7 of a source program line, denotes a
line that COBOL85 treats as a comment line when you compile
the program without the -DEBUG option, or when you omit
the WITH DEBUGGING MODE clause in the SOURCE-
COMPUTER paragraph.

When you compile the program with the -DEBUG option, or
when you specify the WITH DEBUGGING MODE clause in
the SOURCE-COMPUTER paragraph, COBOL85 treats the
line as a normal source statement.

~ >

~

B-2 First Edition

Reference Tables

TABLE B-1
COBOL85 Symbols - Continued

Symbol Functions

Sign Symbols and Unary Operators — Used in numeric literals and arithmetic expressions

+ Plus 1. Sign character in the high-order (leftmost) position of a
numeric literal.

2. Unary operator for multiplication by numeric literal +1.

Minus 1. Sign character in the high-order (leftmost) position of a
numeric literal.

2. Unary operator for multiplication by numeric literal -1.

Arithmetic Symbols — Used in arithmetic expressions

()

Plus Addition.

Minus Subtraction.

Asterisk Multiplication.

Slash Division.

Double asterisk Exponentiation.

Equal Assignment.

Parentheses Enclose expressEnclose expressions to control the sequence in which they are
evaluated.

Condition Symbols — Used in conditional test expressions

>=

<=

()

Equal

Greater than

Greater than or
equal to

Less than

Less than or
equal to

Parentheses

Denotes is equal to.

Denotes is greater than.

Denotes is greater than or equal to.

Denotes is less than.

Denotes is less than or equal to.

Enclose expressions to control the sequence in which conditions
are evaluated.

r
r First Edition B-3

COBOL85 Reference Guide

TABLE B-1
COBOL85 Symbols - Continued

Symbol Functions

Edit Symbols — Used in picture clauses

Decimal point Inserts a decimal point in the indicated position of an edited
(insertion character) item.

+ or-

Comma (insertion
character)

Dollar sign (floating
character)

Slash (insertion
character)

Asterisk (replace
ment character)

Plus or minus (fixed
sign control or
floating characters)

B (Insertion character

0 Zero (insertion
character)

z (Replacement
character)

CR Credit (order fixed
sign-control
character)

DB Debit (fixed sign-
control character)

P (Decimal scaling
character)

V (Assumed decimal
point)

B-4 First Edition

Inserts a comma in the indicated position of an edited item.
(May be used in conjunction with floating characters.)

Floats a dollar sign in an edited item so that exactly one dollar
sign is inserted immediately to the left of the most significant
nonzero digit in any position where the symbol is used.

Inserts a slash in the indicated position of an edited item.

Replaces leading zeros with an asterisk. Each asterisk represents
a digit position in an edited item.

1. Fixed sign control character in the low-order (rightmost)
position of an edited item picture. The symbol docs not
replace a digit position.

2. Floats a plus or minus character (from left to right) in an
edited item, so that exactly one plus or minus sign is
inserted immediately to the left of the most significant non
zero digit in any position where the symbol is used.

Inserts blanks in the indicated positions of an edited item.

Inserts zeros in the indicated positions of an edited item.

Replaces leading zeros with blanks in the indicated positions of
an edited item.

Fixed sign control character in the low-order (rightmost) posi
tion of an edited item picture. It occupies two character posi
tions in the edited result.

Fixed sign-control character in the low-order (rightmost) posi
tion of an edited item picture. It occupies two character posi
tions in the edited result.

Specifies the location of an assumed decimal point when the
point is not within the number that appears in the associated
data item.

Positions an assumed decimal point in a field.

" >

TABLE B-2
COBOL85 Reserved Words

Reference Tables

r

r

r
-

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL
ALPHABET*
ALPHABETIC
ALPHABETIC-LOWER
ALPHABETIC-UPPER
ALPHANUMERIC*
ALPHANUMERIC-EDITED*
ALSO*
ALTER
ALTERNATE
AND
ANY*
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR
BEFORE
BINARY
BLANK
BLOCK
BOTTOM*
BY
CALL
CANCEL*
CBL-SUBSCHEMA#
CD*
CF*
CH*
CHARACTER
CHARACTERS
CLASS
CLOCK-UNITS*
CLOSE
COBOL
CODE*
CODE-SET
COLLATING
COLUMN
COMMA
COMMON*
COMMUNICATION*
Prime reserved word.* Not implemented.

COMP
COMP-l#
COMP-2#
COMP-3#
COMPRESSED#
COMPUTATIONAL
COMPUTATIONAL-1#
COMPUTATION AL-2#
COMPUTATIONAL-3#
COMPUTE
CONFIGURATION
CONTAINS
CONTENT*
CONTINUE
CONTROL
CONTROLS
CONVERTING
COPY
CORR
CORRESPONDING
COUNT
CURRENCY
DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-QF-WEEK
DE*
DEBUG-CONTENTS*
DEBUG-ITEM*
DEBUG-LINE*
DEBUG-NAME*
DEBUG-SUB-1*
DEBUG-SUB-2*
DEBUG-SUB-3*
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DELETE
DELIMITED
DELIMITER
DEPENDING
DESCENDING
DESTINATION*
DETAIL*
DISABLE*
DISPLAY
DIVIDE

DIVISION
DOWN
DUPLICATES
DYNAMIC
EGI*
EJECT#
ELSE
EMI*
ENABLE*
END
END-ADD
END-CALL
END-COMPUTE
END-DELETE
END-DIVIDE
END-EVALUATE*
END-IF
END-MULTIPLY
END-OF-PAGE*
END-PERFORM
END-READ
END-RECEIVE*
END-RETURN
END-REWRITE
END-SEARCH
END-START
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
ENTER
ENVIRONMENT
EOP*
EQUAL
ERROR
ESI*
EVALUATE*
EVERY*
EXCEPTION
EXHIBITS
EXIT
EXTEND
EXTERNAL
FALSE*
FD
FILE
FILE-CONTROL
FILLER
FINAL*

First Edition B-5

COBOL85 Reference Guide

TABLE B-2
COBOL85 Reserved Words - Continued

FIRST
FOOTING*
FOR
FROM
GENERATE*
GIVING
GLOBAL*
GO
GOBACK#
GREATER
GROUP*
HEADING*
HIGH-VALUE
HIGH-VALUES
1-0
I-O-CONTROL
ID#
IDENTIFICATION
IF
IN
INDEX
INDEXED
INDICATE*
INITIAL
INITIALIZE*
INITIATE*
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO
INVALID
IS
JUST
JUSTIFIED
KEY
LABEL
LAST*
LEADING
LEFT
LESS
LIMIT*
LIMITS*
LINAGE*
LINAGE-COUNTER*
LINE
LINES
LINE_COUNTER*
LINKAGE
Prime reserved word.
* Not implemented.

LOCK*
LOW-VALUE
LOW-VALUES
MEMORY
MERGE
MESSAGE*
MODE
MODULES*
MOVE
MULTIPLE*
MULTIPLY
NAMEDS
NATIVE
NEGATIVE
NEXT
NO
NOT
NOTE#
NUMBER*
NUMERIC
NUMERIC-EDITED*
OBJECT-COMPUTER
OCCURS
OF
OFF
OMITTED
ON
OPEN
OPTIONAL
OR
ORDER*
ORGANIZATION
OTHER*
OTHERWISES
OUTPUT
OVERFLOW
OWNERS
PACKED_DECIMAL
PADDING*
PAGE
PAGE-COUNTER*
PERFORM
PF*
PH*
PIC
PICTURE
PLUS*
POINTER
POSITION

POSITIVE
PRINTING*
PROCEDURE
PROCEDURES*
PROCEED
PROGRAM
PROGRAM-ID
PURGE*
QUEUE*
QUOTE
QUOTES
RANDOM
RD*
READ
READY#
RECEIVE*
RECORD
RECORDS
REDEFINES
REEL
REFERENCE*
REFERENCES*
RELATIVE
RELEASE
REMAINDER
REMARKSS
REMOVAL*
RENAMES
REPLACE*
REPLACING
REPORT*
REPORTING*
REPORTS*
RERUN*
RESERVE
RESET
RETURN
REVERSED*
REWIND
REWRITE
RF*
RH*
RIGHT
ROUNDED
RUN
SAME
SD
SEARCH
SECTION

B-6 First Edition

Reference Tables

TABLE B-2
COBOL85 Reserved Words ■■ Continued

SECURITY SUB-QUEUE-3* USE
SEEKS SUBTRACT USING
SEGMENT* SUM* VALUE
SEGMENT-LIMIT SUPPRESS* VALUES
SELECT SYMBOLIC* VARYING
SEND* SYNC WHEN
SENTENCE SYNCHRONIZED WITH
SEPARATE TABLE* WORDS*
SEQUENCE TALLYING WORKING-STORAGE
SEQUENTIAL TAPE WRITE
SET TERMINAL ZERO
SIGN TERMINATE* ZEROES
SIZE TEST* ZEROS
SKIP1S THAN
SKIP2S THEN **
SKIP3S THROUGH
SORT THRU
SORT-MERGE TIME
SOURCE* TIMES
SOURCE-COMPUTER TO <=
SPACE TOP*
SPACES TRACES
SPECIAL-NAMES TRAILING >=
STANDARD TRUE*
STANDARD-1 TYPE*
STANDARD-2 UNCOMPRESSEDS
START UNIT*
STATUS UNSTRING
STOP UNTIL
STRING UP
SUB-QUEUE-1* UPON
SUB-QUEUE-2* USAGE

r S Prime reserved word.
* Not implemented.

r
r

Prime Extended Character Set Table
Table B-3 contains all of the Prime ECS characters, arranged in ascending order. This order
provides the collating sequence for sorting, merging, and comparing character strings. For each
character, the table includes the graphic, the mnemonic, the description, and the binary, decimal,
hexadecimal, and octal values. A blank entry indicates that the particular item does not apply to
this character. The graphics for control characters are specified as ^character, for example, AP
represents the character produced when you type P while holding the control key down.
Characters with decimal values from 000 to 031 and from 128 to 159 are control characters.

Characters with decimal values from 032 to 127 and from 160 to 255 are graphic characters.

For additional information on the specification of Prime ECS mnemonics, sec the section
Nonnumeric Literals, in Chapter 4.

First Edition B-7

COBOL85 Reference Guide

TABLE B-3
Prime Extended Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

RES1 Reserved for future
standardization

0000 0000 000 00 000

RES2 Reserved for future
standardization

0000 0001 001 01 001

RES3 Reserved for future
standardization

0000 0010 002 02 002

RES4 Reserved for future
standardization

0000 0011 003 03 003

IND Index 0000 0100 004 04 004
NEL Next line 0000 0101 005 05 005
SSA Start of selected area 0000 0110 006 06 006
ESA End of selected area 0000 0111 007 07 007
HTS Horizontal tabulation set 00001000 008 08 010
HTJ Horizontal tab with

justify
00001001 009 09 011

VTS Vertical tabulation set 00001010 010 0A 012
PLD Partial line down 00001011 011 0B 013
PLU Partial line up 00001100 012 0C 014
Rl Reverse index 00001101 013 0D 015

i S S 2 Single shift 2 00001110 014 0E 016
SS3 Single shift 3 0000 1111 015 OF 017
DCS Pevice control string 0001 0000 016 10 020
PU1 Private use 1 0001 0001 017 11 021
PU2 Private use 2 0001 0010 018 12 022
STS Set transmission state 0001 0011 019 13 023 ,
CCH Cancel character 0001 0100 020 14 024
MW Message waiting 0001 0101 021 15 025
SPA Start of protected area 00010110 022 16 026
EPA End of protected area 0001 0111 023 17 027
RES5 Reserved for future

standardization
0001 1000 024 18 030

RES6 Reserved for future
standardization

0001 1001 025 19 031

RES7 Reserved for future
standardization

0001 1010 026 1A 032

CSI Control sequence
introducer

0001 1011 027 1B 033

ST String terminator 0001 1100 028 1C 034
OSC Operating system

command
0001 1101 029 1D 035

PM Privacy message 0001 1110 030 1E 036

B-8 First Edition

Reference Tables

TABLE B-3
Prime Extended Character Set - Continued

Graphic Mnemonic Descr ipt ion Binary Decimal Hex Octal

APC Application program
command

0001 1111 031 1F 037

NBSP No-break space 0010 0000 032 20 040
i INVE Inverted exclamation

mark
0010 0001 033 21 041

* CENT Cent sign 0010 0010 034 22 042
£ PND Pound sign 0010 0011 035 23 043
a CURR Currency sign 0010 0100 036 24 044
¥ YEN Yen sign 0010 0101 037 25 045
i
i BBAR Broken bar 00100110 038 26 046
§ SECT Section sign 0010 0111 039 27 047
•• DIA Diaeresis, umlaut 0010 1000 040 28 050
© COPY Copyright sign 00101001 041 29 051
a FOI Feminine ordinal

indicator
00101010 042 2A 052

« LAQM Left angle quotation
mark

00101011 043 2B 053

- i NOT Not sign 00101100 044 2C 054
SHY Soft hyphen 00101101 045 2D 055

© TM Registered trademark
sign

00101110 046 2E 056

MACN Macron 00101111 047 2F 057
o DEGR Degree sign 0011 0000 048 30 060
± PLMI Plus/minus sign 0011 0001 049 31 061
2 SPS2 Superscript two 0011 0010 050 32 062
3 SPS3 Superscript three 0011 0011 051 33 063
s AAC Acute accent 0011 0100 052 34 064
M LCMU Lowercase Greek letter

U, micro sign
0011 0101 053 35 065

1 PARA Paragraph sign, Pilgrow
sign

0011 0110 054 36 066

• MIDD Middle dot 0011 0111 055 37 067
a CED Cedilla 0011 1000 056 38 070

1 SPS1 Superscript one 0011 1001 057 39 071
o MOI Masculine ordinal

indicator
0011 1010 058 3A 072

» RAQM Right angle quotation
mark

0011 1011 059 3B 073

Va FR14 Common fraction
one-quarter

0011 1100 060 3C 074

First Edition B-9

COBOL85 Reference Guide

TABLE B-3
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

1 /2 FR12 Common fraction
one-half

0011 1101 061 3D 075

3/4 FR34 Common fraction
three-quarters

0011 1110 062 3E 076

i INVQ Inverted question mark 0011 1111 063 3F 077
A UCAG Uppercase A with grave

accent
0100 0000 064 40 100

A UCAA Uppercase A with acute
accent

0100 0001 065 41 101

A UCAC Uppercase A with
circumflex

0100 0010 066 42 102

A UCAT Uppercase A with tilde 0100 0011 067 43 103
A UCAD Uppercase A with

diaeresis
0100 0100 068 44 104

A UCAR Uppercase A with ring
above

0100 0101 069 45 105

/E UCAE Uppercase diphthong
PE

0100 0110 070 46 106

9 UCCC Uppercase C with
cedilla

01000111 071 47 107

E UCEG Uppercase E with grave
accent

01001000 072 48 110

E UCEA Uppercase E with acute
accent

01001001 073 49 111

E UCEC Uppercase E with
circumflex

01001010 074 4A 112

E UCED Uppercase E with
diaeresis

01001011 075 4B 113

I UCIG Uppercase I with grave
accent

01001100 076 4C 114

I UCIA Uppercase I with acute
accent

0100 1101 077 4D 115

T UCIC Uppercase I with
circumflex

01001110 078 4E 116

T UCID Uppercase I with
diaeresis

01001111 079 4F 117

-D UETH Uppercase Icelandic
letter Eth

0101 0000 080 50 120

N UCNT Uppercase N with tilde 0101 0001 081 51 121
6 UCOG Uppercase 0 with grave

accent
0101 0010 082 52 122

6 UCOA Uppercase O with acute
accent

0101 0011 083 53 123

B-10 First Edition

Reference Tables

FABLE B-3
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

6 UCOC Uppercase 0 with
circumflex

0101 0100 084 54 124

6 UCOT Uppercase 0 with tilde 0101 0101 085 55 125
6 UCOD Uppercase 0 with

diaeresis
0101 0110 086 56 126

X MULT Multiplication sign used
in mathematics

0101 0111 087 57 127

0 UCOO Uppercase 0 with
oblique line

0101 1000 088 58 130
V

U UCUG Uppercase U with grave
accent

0101 1001 089 59 131

U UCUA Uppercase U with acute
accent

0101 1010 090 5A 132

U UCUC Uppercase U with
circumflex

0101 1011 091 5B 133

u UCUD Uppercase U with
diaeresis

0101 1100 092 5C 134

Y UCYA Uppercase Y with acute
accent

0101 1101 093 5D 135

t> UTHN Uppercase Icelandic
letter Thorn

0101 1110 094 5E 136

fl LGSS Lowercase German
letter doubles

0101 1111 095 5F 137

a LCAG Lowercase a with grave
accent

0110 0000 096 60 140
sa LCAA Lowercase a with acute

accent
0110 0001 097 61 141

a LCAC Lowercase a with
circumflex

01100010 098 62 142

a LCAT Lowercase a with tilde 0110 0011 099 63 143
a LCAD Lowercase a with

diaeresis
01100100 100 64 144

oa LCAR Lowercase a with ring
above

01100101 101 65 145

ae LCAE Lowercase diphthong ae 01100110 102 66 146
§ LCCC Lowercase c with cedilla 01100111 103 67 147
e LCEG Lowercase e with grave

accent
01101000 104 68 150

e LCEA Lowercase e with acute
accent

01101001 105 69 151

e LCEC Lowercase e with 01101010 106 6A 152
circumflex

First Edition B-11

COBOL85 Reference Guide

TABLE B-3
Prime Extended Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

L C E D L o w e r c a s e e w i t h 0 1 1 0 1 0 1 1 1 0 7 6 B 1 5 3
diaeresis

LCIG Lowercase i w i th grave 01101100 108 6C 154
accent

LCIA Lowercase i w i th acu te 01101101 109 6D 155
accent

L C i C L o w e r c a s e i w i t h 0 1 1 0 1 1 1 0 1 1 0 6 E 1 5 6
circumflex

L C I D L o w e r c a s e i w i t h 0 1 1 0 1 1 1 1 1 1 1 6 F 1 5 7
diaeresis

L E T H L o w e r c a s e I c e l a n d i c 0 111 0 0 0 0 11 2 7 0 1 6 0
letter Eth

LCNT Lowercase n w i th t i l de 01110001 113 71 161
LCOG Lowercase o with grave 0111 0010 114 72 162

accent
LCOA Lowercase o with acute 0111 0011 115 73 163

accent
L C O C L o w e r c a s e o w i t h 0 1 1 1 0 1 0 0 1 1 6 7 4 1 6 4

circumflex
LCOT Lowercase o w i th t i l de 01110101 117 75 165
L C O D L o w e r c a s e o w i t h 0 1 1 1 0 1 1 0 1 1 8 7 6 1 6 6

diaeresis
D I V D i v i s i o n s i g n u s e d i n 0 111 0 111 11 9 7 7 1 6 7

mathematics
L C O O L o w e r c a s e o w i t h 0 1 1 1 1 0 0 0 1 2 0 7 8 1 7 0

oblique line
LCUG Lowercase u with grave 01111001 121 79 171

accent
LCUA Lowercase u wi th acute 01111010 122 7A 172

accent
L C U C L o w e r c a s e u w i t h 0 1 1 1 1 0 1 1 1 2 3 7 B 1 7 3

circumflex
L C U D L o w e r c a s e u w i t h 0 1 1 1 1 1 0 0 1 2 4 7 C 1 7 4

diaeresis
LCYA Lowercase y wi th acute 01111101 125 7D 175

accent
LT H N L o w e r c a s e I c e l a n d i c 0 111111 0 1 2 6 7 E 1 7 6

letter Thorn
L C Y D L o w e r c a s e y w i t h 0 1 1 1 1 1 1 1 1 2 7 7 F 1 7 7

diaeresis

B-12 First Edition

TABLE B-3
Prime Extended Character Set - Continued

Reference Tables

'

r

r
r

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 1000 0000 128 80 200
AA SOH/TC1 Start of heading 1000 0001 129 81 201
AB STX/TC2 Start of text 1000 0010 130 82 202
AC ETX/TC3 End of text 1000 0011 131 83 203
AD EOT/TC4 End of transmission 1000 0100 132 84 204
AE ENQ/TC5 Enquiry 1000 0101 133 85 205
AF ACK/TC6 Acknowledge 1000 0110 134 86 206
AG BEL Bell 1000 0111 135 87 207
AH BS/FEO Backspace 1000 1000 136 88 210
Al HT/FE1 Horizontal tab 10001001 137 89 211
AJ LF/NL/FE2 Line feed 10001010 138 8A 212
AK VT/FE3 Vertical tab 1000 1011 139 8B 213
AL FF/FE4 Form feed 10001100 140 8C 214
AM CR/FE5 Carriage return 10001101 141 8D 215
AN SO/LS1 Shift out 10001110 142 8E 216
A0 SI/LSO Shift in 1000 1111 143 8F 217
AP DLE/TC7 Data link escape 1001 0000 144 90 220
AQ DC1/XON Device control 1 1001 0001 145 91 221
AR DC2 Device control 2 1001 0010 146 92 222
AS DC3/XOFF Device control 3 1001 0011 147 93 223
AT DC4 Device control 4 1001 0100 148 94 224
AU NAK/TC8 Negative acknowledge 1001 0101 149 95 225
AV SYN/TC9 Synchronous idle 1001 0110 150 96 226
AW ETB/TC10 End of transmission

block
1001 0111 151 97 227

AX CAN Cancel 1001 1000 152 98 230
AY EM End of medium 1001 1001 153 99 231
AZ SUB Substitute 1001 1010 154 9A 232
1 ESC Escape 1001 1011 155 9B 233
A\ FS/IS4 File separator 1001 1100 156 9C 234
1 GS/IS3 Group separator 1001 1101 157 9D 235
A A RS/IS2 Record separator 1001 1110 158 9E 236
A US/IS1 Unit separator 1001 1111 159 9F 237

SP Space 1010 0000 160 A0 240
! Exclamation mark 1010 0001 161 A1 241

i i Quotation mark 10100010 162 A2 242
NUMB Number sign 10100011 163 A3 243
$ DOLR Dollar sign 10100100 164 A4 244
% Percent sign 10100101 165 A5 245
& Ampersand 10100110 166 A6 246

First Edition B-13

COBOL85 Reference Guide

TABLE B-3
Prime Extended Character Set - Continued

Graph i c Mnemon ic Desc r i p t i on Binary Decimal Hex Octal

/
Apostrophe 10100111 167 A7 247

(Left parenthesis 10101000 168 A8 250
) Right parenthesis 10101001 169 A9 251
* Asterisk 10101010 170 AA 252
+ Plus sign 10101011 171 AB 253

i > Comma 10101100 172 AC 254
- Minus sign 10101101 173 AD 255
. Period 10101110 174 AE 256
/ Slash 10101111 175 AF 257
0 Zero 10110000 176 BO 260
1 One 10110001 177 B1 261
2 Two 10110010 178 B2 262
3 Three 1011 0011 179 B3 263
4 Four 1011 0100 180 B4 264
5 Five 1011 0101 181 B5 265
6 Six 10110110 182 B6 266
7 Seven 10110111 183 B7 267
8 Eight 1011 1000 184 B8 270
9 Nine 1011 1001 185 B9 271
: Colon 1011 1010 186 BA 272
j Semicolon 1011 1011 187 BB 273

< Less than sign 1011 1100 188 BC 274
= Equal sign 1011 1101 189 BD 275
> Greater than sign 1011 1110 190 BE 276
? Question mark 1011 1111 191 BF 277
@ A T Commercial at sign 1100 0000 192 CO 300

| A Uppercase A 1100 0001 193 C1 301
B Uppercase B 1100 0010 194 C2 302

I C Uppercase C 1100 0011 195 C3 303
D Uppercase D 1100 0100 196 C4 304
E Uppercase E 1100 0101 197 C5 305
F Uppercase F 1100 0110 198 C6 306
G Uppercase G 1100 0111 199 C7 307
H Uppercase H 1100 1000 200 C8 310
I Uppercase I 1100 1001 201 C9 311

J Uppercase J 11001010 202 CA 312
K Uppercase K 11001011 203 CB 313
L Uppercase L 11001100 204 CC 314
M Uppercase M 11001101 205 CD 315
N Uppercase N 11001110 206 CE 316

B-14 First Edition

Reference Tables

TABLE B-3
Prime Extended Character Set - Continued

r

r

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

0 Uppercase 0 11001111 207 CF 317
P Uppercase P 1101 0000 208 DO 320
Q Uppercase Q 1101 0001 209 D1 321
R Uppercase R 1101 0010 210 D2 322
S Uppercase S 1101 0011 211 D3 323
T Uppercase T 1101 0100 212 D4 324
U Uppercase U 1101 0101 213 D5 325
V Uppercase V 1101 0110 214 D6 326
W Uppercase W 1101 0111 215 D7 327
X Uppercase X 1101 1000 216 D8 330
Y Uppercase Y 1101 1001 217 D9 331
Z Uppercase Z 1101 1010 218 DA 332
[LBKT Left bracket 1101 1011 219 DB 333
\ REVS Reverse slash,

backslash
1101 1100 220 DC 334

) RBKT Right bracket 1101 1101 221 DD 335
* C F L X C i r c u m fl e x 1101 1110 222 DE 336

Underline, underscore 1101 1111 223 DF 337
* GRAV Left single quote, grave

accent
1110 0000 224 EO 340

a Lowercase a 1110 0001 225 E1 341
b Lowercase b 11100010 226 E2 342
c Lowercase c 1110 0011 227 E3 343
d Lowercase d 11100100 228 E4 344
e Lowercase e 11100101 229 E5 345
f Lowercase f 11100110 230 E6 346
g Lowercase g 11100111 231 E7 347
h Lowercase h 11101000 232 E8 350
i Lowercase i 11101001 233 E9 351
j Lowercase j 11101010 234 EA 352
k Lowercase k 11101011 235 EB 353
1 Lowercase 1 11101100 236 EC 354

m Lowercase m 11101101 237 ED 355
n Lowercase n 11101110 238 EE 356
0 Lowercase o 11101111 239 EF 357
P Lowercase p 1111 0000 240 FO 360
q Lowercase q 1111 0001 241 F1 361
r Lowercase r 1111 0010 242 F2 362
s Lowercase s 1111 0011 243 F3 363
t Lowercase t 1111 0100 244 F4 364

First Edition B-15

COBOL85 Reference Guide

TABLE B-3
Prime Extended Character Set - Continued

aphic Mnemonic D e s c r i p t i o n

u Lowercase u
V Lowercase v
w Lowercase w
X Lowercase x
y Lowercase y
z Lowercase z
{ LBCE Left brace
1 VERT Vertical line
} RBCE Right brace

TIL Tilde
DEL Delete

Binary Decimal Hex Octal

B-16 First Edition

1111 0101 245 F5 365
11110110 246 F6 366
1111 0111 247 F7 367
1111 1000 248 F8 370
1111 1001 249 F9 371
1111 1010 250 FA 372
1111 1011 251 FB 373
1111 1100 252 FC 374
1111 1101 253 FD 375
1111 1110 254 FE 376
11111111 255 FF 377

" >

Reference Tables

Standard-1 ASCII Character Set Table
Table B-4 contains the standard ASCII character set as defined by ANSI X3.4-1977, arranged
in ascending order. This order provides the collating sequence for nonnumeric comparisons
in conditional expressions when the alphabet-name of the PROGRAM COLLATING
SEQUENCE clause is an alphabet-name specified as STANDARD-1.
For each character, the table includes the graphic, the mnemonic, the description, and the
binary, decimal, hexadecimal, and octal value. A blank entry indicates that the particular item
does not apply to this character. The graphics for control characters are specified as
^character; for example, AP represents the character produced when you type P while
holding the control key down.

r

c
- First Edition B-17

COBOL85 Reference Guide

TABLE B-4
Standard-1 ASCII Character Set

Graphic Mnemonic Description Binary Decimal Hex Octal

NUL Null 0000 0000 000 00 000
AA SOH/TC1 Start of heading 0000 0001 001 01 001
AB STX/TC2 Start of text 0000 0010 002 02 002
AC ETX/TC3 End of text 0000 0011 003 03 003
AD EOT/TC4 End of transmission 0000 0100 004 04 004
AE ENQ/TC5 Enquiry 0000 0101 005 05 005
AF ACK/TC6 Acknowledge 0000 0110 006 06 006
AG BEL Bell 0000 0111 007 07 007
AH BS/FEO Backspace 00001000 008 08 010
Al HT/FE1 Horizontal tab 00001001 009 09 011
AJ LF/NL/FE2 Line feed 00001010 010 0A 012
AK VT/FE3 Vertical tab 00001011 011 0B 013
AL FF/FE4 Form feed 00001100 012 0C 014
AM CR/FE5 Carriage return 00001101 013 0D 015
AN SO/LS1 Shift out 00001110 014 0E 016
A0 SI/LSO Shift in 0000 1111 015 OF 017
AP DLE/TC7 Data link escape 0001 0000 016 10 020
AQ DC1/XON Device control 1 0001 0001 017 11 021
AR DC2 Device control 2 0001 0010 018 12 022
AS DC3/XOFF Device control 3 0001 0011 019 13 023
AT DC4 Device control 4 0001 0100 020 14 024
AU NAK/TC8 Negative acknowledge 0001 0101 021 15 025
AV SYNrrC9 Synchronous idle 00010110 022 16 026
AW ETBATC10 End of transmission

block
0001 0111 023 17 027

AX CAN Cancel 0001 1000 024 18 030
AY EM End of medium 0001 1001 025 19 031
AZ SUB Substitute 0001 1010 026 1A 032
1 ESC Escape 0001 1011 027 1B 033
A\ FS/IS4 File separator 0001 1100 028 1C 034
A] GS/IS3 Group separator 0001 1101 029 1D 035
A A RS/IS2 Record separator 0001 1110 030 1E 036

US/IS1 Unit separator 0001 1111 031 1F 037
SP Space 0010 0000 032 20 040

! Exclamation mark 0010 0001 033 21 041
// Quotation mark 0010 0010 034 22 042
NUMB Number sign 0010 0011 035 23 043
$ DOLR Dollar sign 0010 0100 036 24 044
% Percent sign 0010 0101 037 25 045
& Ampersand 00100110 038 26 046

B-18 First Edition

Reference Tables

TABLE B-4
Standard-1 ASCII Character Set - Continued

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

/
Apostrophe 00100111 039 27 047

(Left parenthesis 00101000 040 28 050
) Right parenthesis 00101001 041 29 051
* Asterisk 00101010 042 2A 052
+ Plus sign 00101011 043 2B 053
> Comma 00101100 044 2C 054
- Minus sign 00101101 045 2D 055
■ Period 00101110 046 2E 056
/ Slash 00101111 047 2 F 057
0 Zero 0011 0000 048 30 060
1 One 0011 0001 049 31 061
2 Two 0011 0010 050 32 062
3 Three 0011 0011 051 33 063
4 Four 0011 0100 052 34 064
5 Five 0011 0101 053 35 065
6 Six 0011 0110 054 36 066
7 Seven 0011 0111 055 37 067
8 Eight 0011 1000 056 38 070
9 Nine 0011 1001 057 39 071
: Colon 0011 1010 058 3A 072
5 Semicolon 0011 1011 059 3B 073

< Less than sign 0011 1100 060 3C 074
= Equal sign 0011 1101 061 3D 075
> Greater than sign 0011 1110 062 3E 076
? Question mark 0011 1111 063 3F 077
@ AT C o m m e r c i a l a t s i g n 0100 0000 064 40 100
A Uppercase A 0100 0001 065 41 101
B Uppercase B 0100 0010 066 42 102
C Uppercase C 0100 0011 067 43 103
D Uppercase D 0100 0100 068 44 104
E Uppercase E 0100 0101 069 45 105
F Uppercase F 0100 0110 070 46 106
G Uppercase G 01000111 071 47 107
H Uppercase H 0100 1000 072 48 110
I Uppercase I 01001001 073 49 111
J Uppercase J 0100 1010 074 4A 112
K Uppercase K 0100 1011 075 4B 113
L Uppercase L 0100 1100 076 4C 114
M Uppercase M 01001101 077 4D 115
N Uppercase N 01001110 078 4E 116

First Edition B-19

COBOL85 Reference Guide

TABLE B-4
Standard-1 ASCII Character Set - Continued

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

O Uppercase 0 01001111 079 4F 117
P Uppercase P 0101 0000 080 50 120 '
Q Uppercase Q 0101 0001 081 51 121
R Uppercase R 0101 0010 082 52 122
S Uppercase S 01010011 083 53 123
T Uppercase T 0101 0100 084 54 124
U Uppercase U 01010101 085 55 125
V Uppercase V 01010110 086 56 126
w Uppercase W 0101 0111 087 57 127
X Uppercase X 0101 1000 088 58 130
Y Uppercase Y 0101 1001 089 59 131
z Uppercase Z 0101 1010 090 5A 132
[LBKT Left bracket 0101 1011 091 5B 133
\ REVS Reverse slash,

backslash
0101 1100 092 5C 134

] RBKT Right bracket 0101 1101 093 5D 135A CFLX Circumflex, caret 0101 1110 094 5E 136
_ Underline, underscore 0101 1111 095 5F 137
V GRAV Left single quote, grave

accent
0110 0000 096 60 140

a Lowercase a 0110 0001 097 61 141
b Lowercase b 01100010 098 62 142
c Lowercase c 01100011 099 63 143
d Lowercase d 01100100 100 64 144
e Lowercase e 01100101 101 65 145
f Lowercase f 01100110 102 66 146
g Lowercase g 01100111 103 67 147
h Lowercase h 01101000 104 68 150
i Lowercase i 01101001 105 69 151
j Lowercase j 01101010 106 6A 152

! k Lowercase k 01101011 107 6B 153
I Lowercase I 01101100 108 6C 154

m Lowercase m 01101101 109 6D 155
n Lowercase n 01101110 110 6E 156
0 Lowercase o 01101111 111 6F 157
P Lowercase p 0111 0000 112 70 160
q Lowercase q 01110001 113 71 161
r Lowercase r 01110010 114 72 162
s Lowercase s 0111 0011 115 73 163
t Lowercase t 0111 0100 116 74 164

B-20 First Edition

Reference Tables

TABLE B-4
Standard-1 ASCII Character Set - Continued

Graphic Mnemonic Descr ipt ion B inary Decimal Hex Octal

u Lowercase u 0111 0101 117 75 165
V Lowercase v 0111 0110 118 76 166
w Lowercase w 0111 0111 119 77 167
X Lowercase x 0111 1000 120 78 170
y Lowercase y 0111 1001 121 79 171
z Lowercase z 0111 1010 122 7A 172
{ LBCE Left brace 0111 1011 123 7B 173
I VERT Vertical line 0111 1100 124 7C 174
} RBCE Right brace 0111 1101 125 7D 175

TIL Tilde 0111 1110 126 7E 176
DEL Delete 0111 1111 127 7 F 177
RES1 Reserved for future

standardization
1000 0000 128 80 200

RES2 Reserved for future
standardization

1000 0001 129 81 201

RES3 Reserved for future
standardization

1000 0010 130 82 202

RES4 Reserved for future
standardization

1000 0011 131 83 203

IND Index 1000 0100 132 84 204
NEL Next line 1000 0101 133 85 205
SSA Start of selected area 1000 0110 134 86 206
ESA End of selected area 1000 0111 135 87 207
HTS Horizontal tabulation set 10001000 136 88 210
HTJ Horizontal tab with

justify
10001001 137 89 211

VTS Vertical tabulation set 1000 1010 138 8A 212
PLD Partial line down 10001011 139 8B 213
PLU Partial line up 10001100 140 8C 214
Rl Reverse index 10001101 141 8D 215
SS2 Single shift 2 10001110 142 8E 216
SS3 Single shift 3 1000 1111 143 8F 217
DCS Device control string 1001 0000 144 90 220
PU1 Private use 1 1001 0001 145 91 221
PU2 Private use 2 1001 0010 146 92 222
STS Set transmission state 1001 0011 147 93 223
CCH Cancel character 1001 0100 148 94 224
MW Message waiting 1001 0101 149 95 225
SPA Start of protected area 1001 0110 150 96 226

|

EPA End of protected area 1001 0111 151 97 227

First Edition B-21

COBOL85 Reference Guide

TABLE B-4
Standard-1 ASCII Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

RES5 Reserved for future
standardization

1001 1000 152 98 230

RES6 Reserved for future
standardization

1001 1001 153 99 231

RES7 Reserved for future
standardization

1001 1010 154 9A 232

CSI Control sequence
introducer

1001 1011 155 9B 233

ST
OSC

String terminator
Operating system
command

1001 1100
1001 1101

156
157

9C
9D

234
235

PM
APC

Privacy message
Application program
command

1001 1110
1001 1111

158
159

9E
9F

236
237

' i
NBSP
INVE

No-break space
Inverted exclamation
mark

1010 0000
1010 0001

160
161

A0
A1

240
241

* CENT Cent sign 10100010 162 A2 242
£ PND Pound sign 10100011 163 A3 243

¥
CURR
YEN

Currency sign
Yen sign

10100100
10100101

164
165

A4
A5

244
245

i
i BBAR Broken bar 10100110 166 A6 246
§ SECT Section sign 10100111 167 A7 247
•• DIA Diaeresis, umlaut 10101000 168 A8 250
© COPY Copyright sign 10101001 169 A9 251
a FOI Feminine ordinal

indicator
10101010 170 AA 252

« LAQM Left angle quotation
mark

10101011 171 AB 253

- i NOT Not sign 10101100 172 AC 254

®
SHY
TM

MACN

Soft hyphen
Registered trademark
sign
Macron

10101101
10101110

10101111

173
174

175

AD
AE

AF

255
256

257
o

±
DEGR
PLMI

Degree sign
Plus/minus sign

1011 0000
1011 0001

176
177

B0
B1

260
261

2 SPS2 Superscript two 1011 0010 178 B2 262
3 SPS3

AAC
Superscript three
Acute accent

1011 0011
1011 0100

179
180

B3
B4

263
264

M LCMU Lowercase Greek letter
u, micro sign

1011 0101 181 B5 265

B-22 First Edition

Reference Tables

TABLE B-4
Standard-1 ASCII Character Set - Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

1 PARA Paragraph sign, Pilgrow
sign

1011 0110 182 B6 266

• MIDD Middle dot 1011 0111 183 B7 267
^ CED Cedilla 1011 1000 184 B8 270

i SPS1 Superscript one 1011 1001 185 B9 271
o MOI Masculine ordinal

indicator
1011 1010 186 BA 272

» RAQM Right angle quotation
mark

1011 1011 187 BB 273

Va FR14 Common fraction
one-quarter

1011 1100 188 BC 274

1/2 FR12 Common fraction
one-half

1011 1101 189 BD 275

3/4 FR34 Common fraction
three-quarters

1011 1110 190 BE 276

6 INVQ Inverted question mark 1011 1111 191 BF 277
A UCAG Uppercase A with grave

accent
1100 0000 192 CO 300

A UCAA Uppercase A with acute
accent

1100 0001 193 Cl 301
A

A UCAC Uppercase A with
circumflex

1100 0010 194 C2 302

A UCAT Uppercase A with tilde 1100 0011 195 C3 303
A UCAD Uppercase A with

diaeresis
11000100 196 C4 304

A UCAR Uppercase A with ring
above

1100 0101 197 C5 305

/E UCAE Uppercase diphthong 1100 0110 198 C6 306

9 UCCC Uppercase C with
cedilla

1100 0111 199 C7 307
VE UCEG Uppercase E with grave

accent
11001000 200 C8 310

E UCEA Uppercase E with acute
accent

11001001 201 C9 311

E UCEC Uppercase E with
circumflex

11001010 202 CA 312

E UCED Uppercase E with
diaeresis

11001011 203 CB 313

I UCIG Uppercase I with grave
accent

11001100 204 CC 314

First Edition B-23

COBOL85 Reference Guide

TABLE B-4
Standard-1 ASCII Character Set - Continued

* >

'

Graphic Mnemonic Description Binary Decimal Hex Octal

f UCIA Uppercase 1 with acute
accent

11001101 205 CD 315

I UCIC Uppercase 1 with
circumflex

11001110 206 CE 316

I UCID Uppercase 1 with
diaeresis

11001111 207 CF 317

E) UETH Uppercase Icelandic
letter Eth

1101 0000 208 DO 320

N
0

UCNT
UCOG

Uppercase N with tilde
Uppercase 0 with grave
accent

11010001
11010010

209
210

D1
D2

321
322

0 UCOA Uppercase 0 with acute
accent

11010011 211 D3 323

0 UCOC Uppercase 0 with
circumflex

1101 0100 212 D4 324

0
6

UCOT
UCOD

Uppercase 0 with tilde
Uppercase 0 with
diaeresis

11010101
11010110

213
214

D5
D6

325
326

X MULT Multiplication sign used
in mathematics

11010111 215 D7 327

0

U

UCOO

UCUG

Uppercase 0 with
oblique line
Uppercase U with grave
accent

1101 1000

1101 1001

216

217

D8

D9

330

331

U UCUA Uppercase U with acute
accent

1101 1010 218 DA 332

U UCUC Uppercase U with
circumflex

1101 1011 219 DB 333

u

Y

UCUD

UCYA

Uppercase U with
diaeresis
Uppercase Y with acute
accent

1101 1100

1101 1101

220

221

DC

DD

334

335

f> UTHN Uppercase Icelandic
letter Thorn

1101 1110 222 DE 336

13

a

LGSS

LCAG

Lowercase German
letter double s
Lowercase a with grave
accent

1101 1111

1110 0000

223

224

DF

EO

337

340

a LCAA Lowercase a with acute
accent

1110 0001 225 E1 341

a LCAC Lowercase a with
circumflex

11100010 226 E2 342

a LCAT Lowercase a with tilde 1110 0011 227 E3 343

B-24 First Edition

Reference Tables

TABLE B-4
Standard-1 ASCII Character Set ■ Continued

Graphic Mnemonic Description Binary Decimal Hex Octal

a LCAD Lowercase a with
diaeresis

11100100 228 E4 344
oa LCAR Lowercase a with ring

above
11100101 229 E5 345

se LCAE Lowercase diphthong ae 11100110 230 E6 346
9 LCCC Lowercase c with cedilla 11100111 231 E7 347
e LCEG Lowercase e with grave

accent
11101000 232 E8 350

e LCEA Lowercase e with acute
accent

11101001 233 E9 351

e LCEC Lowercase e with
circumflex

11101010 234 EA 352

e LCED Lowercase e with
diaeresis

11101011 235 EB 353

1 LCIG Lowercase i with grave
accent

11101100 236 EC 354

i LCIA Lowercase i with acute
accent

11101101 237 ED 355

i LCIC Lowercase i with
circumflex

1101110 238 EE 356

T LCID Lowercase i with
diaeresis

1101111 239 EF 357

a LETH Lowercase Icelandic
letter Eth

111 0000 240 F0 360

n LCNT Lowercase n with tilde 111 0001 241 F1 361
0 LCOG Lowercase o with grave

accent
111 0010 242 F2 362

0 LCOA Lowercase o with acute
accent

111 0011 243 F3 363

6 LCOC Lowercase o with
circumflex

111 0100 244 F4 364

6 LCOT Lowercase o with tilde 111 0101 245 F5 365
6 LCOD Lowercase o with

diaeresis
111 0110 246 F6 366

- r DIV Division sign used in
mathematics

111 0111 247 F7 367

0 LCOO Lowercase o with
oblique line

111 1000 248 F8 370

U LCUG Lowercase u with grave
accent

111 1001 249 F9 371
s
U LCUA Lowercase u with acute

accent
111 1010 250 FA 372

First Edition B-25

COBOL85 Reference Guide

TABLE B-4
Standard-1 ASCII Character Set - Continued

Graphic Mnemonic Descript ion B i n a r y D e c i m a l H e x O c t a l

u L C U C L o w e r c a s e u w i t h
circumflex

u L C U D L o w e r c a s e u w i t h
diaeresis

y LCYA Lowercase y w i th acute
accent

t > LT H N L o w e r c a s e I c e l a n d i c
letter Thorn

y L C Y D L o w e r c a s e y w i t h
diaeresis

1011

1100

1101

1110

1111

251

252

253

254

255

FB

FC

FD

FE

FF

373

374

375

376

377

B-26 First Edition

Reference Tables

Standard-2 ASCII Character Set Table
Table B-5 contains the International Reference Version of ISO 646 7-bit Coded Character
Set, arranged in ascending order. This order provides the collating sequence for nonnumeric
comparisons in conditional expressions when the alphabet-name of the PROGRAM
COLLATING SEQUENCE clause is an alphabet-name specified as STANDARD-2.
For each character, the table includes the graphic, the mnemonic, the description, and the
binary, decimal, hexadecimal, and octal value. A blank entry indicates that the particular item
does not apply to this character. The graphics for control characters are specified as
^character, for example, AP represents the character produced when you type P while
holding the control key down.

r

r
First Edition B-27

COBOL85 Reference Guide

TABLE B-5
Standard-2 ASCII Character Set

Graphic Mnemonic Descript ion Binary Decimal Hex Octal

NUL Null 0000 0000 000 00 000
AA SOH/TC1 Start of heading 0000 0001 001 01 001
AB STX/TC2 Start of text 0000 0010 002 02 002
AC ETX/TC3 End of text 0000 0011 003 03 003
AD EOT/TC4 End of transmission 0000 0100 004 04 004
AE ENQ/TC5 Enquiry 0000 0101 005 05 005
AF ACK/TC6 Acknowledge 0000 0110 006 06 006
AG BEL Bell 0000 0111 007 07 007
AH BS/FEO Backspace 00001000 008 08 010
Al HT/FE1 Horizontal tab 00001001 009 09 011
AJ LF/NL/FE2 Line feed 00001010 010 0A 012
AK VT/FE3 Vertical tab 0000 1011 011 0B 013
AL FF/FE4 Form feed 0000 1100 012 0C 014
AM CR/FE5 Carriage return 00001101 013 0D 015
AN SO/LS1 Shift out 0000 1110 014 0E 016
A0 SI/LSO Shift in 0000 1111 015 OF 017
AP DLE/TC7 Data link escape 0001 0000 016 10 020
AQ DC1/XON Device control 1 0001 0001 017 11 021
AR DC2 Device control 2 0001 0010 018 12 022
AS DC3/XOFF Device control 3 0001 0011 019 13 023
AT DC4 Device control 4 0001 0100 020 14 024
AU NAK/TC8 Negative acknowledge 0001 0101 021 15 025
AV SYN/TC9 Synchronous idle 0001 0110 022 16 026
AW ETB/TC10 End of transmission

block
0001 0111 023 17 027

AX CAN Cancel 0001 1000 024 18 030
AY EM End of medium 0001 1001 025 19 031
AZ SUB Substitute 0001 1010 026 1A 032
"\ ESC Escape 0001 1011 027 1B 033
A FS/IS4 File separator 0001 1100 028 1C 034
1 GS/IS3 Group separator 0001 1101 029 1D 035
A A

RS/IS2 Record separator 0001 1110 030 1E 036
A

US/IS1 Unit separator 0001 1111 031 1F 037
SP Space 0010 0000 032 20 040

! Exclamation mark 0010 0001 033 21 041
// Quotation mark 0010 0010 034 22 042
NUMB Number sign 0010 0011 035 23 043
n Open Lozenge 0010 0100 036 24 044
% Percent sign 0010 0101 037 25 045
& Ampersand 00100110 038 26 046

B-28 First Edition

Reference Tables

TABLE B-5
Standard-2 ASCII Character Set - Continued

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

'
Apostrophe 00100111 039 27 047

(Left parenthesis 0010 1000 040 28 050
) Right parenthesis 00101001 041 29 051
* Asterisk 00101010 042 2A 052
+ Plus sign 0010 1011 043 2B 053
j Comma 00101100 044 2C 054
- Minus sign 0010 1101 045 2D 055

Period 00101110 046 2E 056
/ Slash 0010 1111 047 2F 057
0 Zero 0011 0000 048 30 060
1 One 0011 0001 049 31 061
2 Two 0011 0010 050 32 062
3 Three 0011 0011 051 33 063
4 Four 0011 0100 052 34 064
5 Five 0011 0101 053 35 065
6 Six 0011 0110 054 36 066
7 Seven 0011 0111 055 37 067
8 Eight 0011 1000 056 38 070
9 Nine 0011 1001 057 39 071
: Colon 0011 1010 058 3A 072
5 Semicolon 0011 1011 059 3B 073
< Less than sign 0011 1100 060 3C 074
= Equal sign 0011 1101 061 3D 075
> Greater than sign 0011 1110 062 3E 076
? Question mark 0011 1111 063 3F 077
@ AT Commercial at sign 0100 0000 064 40 100
A Uppercase A 0100 0001 065 41 101
B Uppercase B 0100 0010 066 42 102
C Uppercase C 0100 0011 067 43 103
D Uppercase D 0100 0100 068 44 104
E Uppercase E 01000101 069 45 105
F Uppercase F 0100 0110 070 46 106
G Uppercase G 0100 0111 071 47 107
H Uppercase H 0100 1000 072 48 110
I Uppercase I 0100 1001 073 49 111
J Uppercase J 0100 1010 074 4A 112
K Uppercase K 01001011 075 4B 113
L Uppercase L 0100 1100 076 4C 114
M Uppercase M 01001101 077 4D 115
N Uppercase N 01001110 078 4E 116

First Edition B-29

COBOL85 Reference Guide

TABLE B-5
Standard-2 ASCII Character Set - Continued

Graphic M n e m o n i c D e s c r i p t i o n Binary Decimal Hex Octal

0 Uppercase 0 01001111 079 4F 117
P Uppercase P 0101 0000 080 50 120
Q Uppercase Q 0101 0001 081 51 121
R Uppercase R 01010010 082 52 122
S Uppercase S 0101 0011 083 53 123
T Uppercase T 0101 0100 084 54 124
U Uppercase U 0101 0101 085 55 125
V Uppercase V 0101 0110 086 56 126
w Uppercase W 0101 0111 087 57 127
X Uppercase X 0101 1000 088 58 130
Y Uppercase Y 0101 1001 089 59 131
Z Uppercase Z 0101 1010 090 5A 132
[L B K T L e f t b r a c k e t 0101 1011 091 5B 133
\ REVS Reve rse s l ash ,

backslash
0101 1100 092 5C 134

] R B K T R i g h t b r a c k e t 0101 1101 093 5 D 135
A C F L X C i r c u m fl e x , c a r e t 0101 1110 094 5E 136
_ Underline, underscore 0101 1111 095 5F 137
V GRAV Left single quote, grave

accent
0110 0000 096 60 140

a Lowercase a 0110 0001 097 61 141
b Lowercase b 01100010 098 62 142
c Lowercase c 0110 0011 099 63 143
d Lowercase d 01100100 100 64 144
e Lowercase e 01100101 101 65 145
f Lowercase f 01100110 102 66 146
g Lowercase g 01100111 103 67 147
h Lowercase h 01101000 104 68 150
i Lowercase i 01101001 105 69 151
j Lowercase j 01101010 106 6A 152
k Lowercase k 01101011 107 6B 153
1 Lowercase 1 01101100 108 6C 154
m Lowercase m 01101101 109 6D 155
n Lowercase n 01101110 110 6E 156
0 Lowercase o 01101111 111 6F 157
P Lowercase p 0111 0000 112 70 160
q Lowercase q 0111 0001 113 71 161
r Lowercase r 0111 0010 114 72 162
s Lowercase s 0111 0011 115 73 163
t Lowercase t 0111 0100 116 74 164

B-30 First Edition

TABLE B-5
Standard-2 ASCII Character Set - Continued

Reference Tables

'

r

iphic Mnemonic Description

u Lowercase u
v Lowercase v
w Lowercase w
X Lowercase x
y Lowercase y
z Lowercase z
{ LBCE Left brace
1 VERT Vertical line
} RBCE Right brace~ TIL Tilde

DEL Delete

Binary Decimal Hex Octal

0111
0111
0111
0111
0111
0111
0111
0111
0111
0111
0111

0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

r
r

117
118
119
120
121
122
123
124
125
126
127

75
76
77
78
79
7A
7B
7C
7D
7E
7F

165
166
167
170
171
172
173
174
175
176
177

First Edition B-31

C0BOL85 Reference Guide

TABLE B-6
EBCDIC Character Set and Collating Sequence

EBCDIC Codes

C0B0L85 Character Set Ilex Decimal Octal

. (period) 4B 075 113
< 4C 076 114
(4D 077 115
+ 4E 078 116
$ 5B 091 133* 5C 092 134
) 5D 093 135
\ 5E 094 136- (minus or hyphen) 60 096 140
/ 61 097 141

, (comma) 6B 107 153
6C 108 154

> 6E 110 156
6F 111 157' (apostrophe) 7D 125 175

= 7E 126 176" (quotation marks) 7F 127 177
a 81 129 201
b 82 130 202
c 83 131 203
d 84 132 204
e 85 133 205
f 86 134 206
g 87 135 207
h 88 136 210
i 89 137 211
J 91 145 221
k 92 146 222
1 93 147 223
m 94 148 224
n 95 149 225
0 96 150 226
P 97 151 227
q 98 152 230
r 99 153 231
s A2 162 242
t A3 163 243
u A4 164 244
V A5 165 245
w A6 166 246
X A7 167 247
y A8 168 250
z A9 169 251
A Cl 193 301
B C2 194 302
C C3 195 303
D C4 196 304

B-32 First Edition

Reference Tables

TABLE B-6
EBCDIC Character Set and Collating Sequence - Continued

r

EBCDIC Codes

COBOL85 Character Set Hex Decimal Octal

E C5 197 305
F C6 198 306
G C7 199 307
H C8 200 310
I C9 201 311
J DI 209 321
K D2 210 322
L D3 211 323
M D4 212 324
N D5 213 325
0 D6 214 326
P D7 215 327
Q D8 216 330
R D9 217 331
S E2 226 342
T E3 227 343
U E4 228 344
V E5 229 345
w E6 230 346
X E7 231 347
Y E8 232 350
Z E9 233 351
0 FO 240 360
1 Fl 241 361
2 F2 242 362
3 F3 243 363
4 F4 244 364
5 F5 245 365
6 F6 246 366
7 F7 247 367
8 F8 248 370
9 F9 249 371

r
r First Edition B-33

COBOL85 Reference Guide

TABLE B-7
Availability of a File

OPEN Mode File Present File Not Present

INPUT

INPUT
(optional file)

1-0

1-0 (optional
file)

OUTPUT

EXTEND

EXTEND
(optional file)

Normal OPEN. Status code 00.

Normal OPEN. Status code 00.

Normal OPEN. Status code 00.

Normal OPEN. Status code 00.

Normal OPEN. Status code 00.
The file contains no records.3

Normal OPEN. Status code 00.

Normal OPEN. Status code 00.

OPEN is unsuccessful. Status code 35.

Normal OPEN. Status code 05. The first
READ causes the AT END or INVALID
KEY condition.

OPEN is unsuccessful. Status code 35.

OPEN causes the file to be created. Status
code 05.1-2

OPEN causes the file to be created. Status
code OO.1-2

OPEN is unsuccessful. Status code 35.

OPEN causes the file to be created. Status
code 05.1,2

1 PRISAM files must have an existing template created by FAU. Otherwise, the OPEN is unsuc
cessful, and status code 37 is returned.

2 MIDASPLUS files must have alphanumeric keys and must be fixed-length files. Otherwise, the
OPEN is unsuccessful, and status code 37 is returned.

3 Sequential disk and tape files (assigned to PRIMOS or MT9) are truncated if the file contains
records. MIDASPLUS and PRISAM files are not truncated. If the file contains records, the
OPEN is unsuccessful, and status code 37 is returned.

" >

B-34 First Edition

Reference Tables

TABLE B-8
Permissible Input-Output Statements After OPEN Options and Access Modes

OPEN Option in Effect

r

F i l e F i l e A c c e s s P r o c e d u r e
O r g a n i z a t i o n M o d e S t a t e m e n t

INPUT OUTPUT 1-0

SEQUENTIAL SEQUENTIAL

INDEXED SEQUENTIAL

RELATIVE

RANDOM

DYNAMIC

SEQUENTIAL

RANDOM

DYNAMIC

READ
WRITE
REWRITE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

READ
WRITE
REWRITE
START
DELETE

EXTEND

X

X = Permitted.

r First Edition B-35

COBOL85 Reference Guide

Hexadecimal, Octal, and Decimal Conversion
To convert a hexadecimal or octal number to decimal with one of the following tables, locate
each digit in the correct column position and add the decimal equivalents of all digits. For
example, 6C5 in hex equals 1,536 +192 + 5 in decimal, or 1,733.
To convert from decimal to hexadecimal or octal, locate the largest decimal value in the tabic
that is still smaller than the number to be converted. Note the corresponding hexadecimal or
octal value on the left. Then subtract that value from your number, and repeat. Each time,
write down the new digit to the right of the last one. For example, 95 is 80 + 15, or 5 from
the second hexadecimal column and F from the third column; 95 decimal equals 5F in
hexadecimal.

TABLE B-9
Hexadecimal and Decimal Conversion

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 256 16
2 8192 512 32
3 12288 768 48
4 16384 1024 64
5 20480 1280 80
6 24576 1536 96
7 28672 1792 112
8 32768 2048 128
9 36864 2304 144
A 40960 2560 160 10
B 45056 2816 176 11
C 49152 3072 192 12
D 53248 3328 208 13
E 57344 3584 224 14
F 61440 3840 240 15

16**3 16**2 16**1 16**0

B-36 First Edition

Reference Tables

r

TABLE B-10
Octal and Decimal Conversion

OCT DEC OCT DEC OCT DEC OCT DEC OCT DEC

0 0 0 0 0 0 0 0 0 0
1 4096 512 64
2 8192 1024 128 16
3 12288 1536 192 24
4 16384 2048 256 32
5 20480 2560 320 40
6 24576 3072 384 48
7 28672 3584 448 56

8**4 8**3 8**2 8**1 8**0

TABLE B-11
Hexadecimal Addition Table

r

C D

1 2 3 4 5 6 7 8 9 A B C D E 10
2 3 4 5 6 7 8 9 A B C D E F 10 11
3 4 5 6 7 8 9 A B C D E F 10 11 12
4 5 6 7 8 9 A B C D E F 10 11 12 13
5 6 7 8 9 A B C D E F 10 11 12 13 14
6 7 8 9 A B C D E F 10 11 12 13 14 15
7 8 9 A B C D E F 10 11 12 13 14 15 16
8 9 A B C D E F 10 11 12 13 14 15 16 17
9 A B C D E F 10 11 12 13 14 15 16 17 18
A B C D E F 10 11 12 13 14 15 16 17 18 19
B C D E F 10 11 12 13 14 15 16 17 18 19 1A
C D E F 10 11 12 13 14 15 16 17 18 19 1A IB
D E F 10 11 12 13 14 15 16 17 18 19 1A IB IC
E F 10 11 12 13 14 15 16 17 18 19 1A IB IC ID
F 10 11 12 13 14 15 16 17 18 19 1A IB IC ID IE

r First Edition B-37

COBOL85 Reference Guide

Decimal Data Types
COBOL85 operates on five types of decimal data. Table B-12 summarizes the characteristics
of each type.

TABLE B-12
Decimal Data Types (Overpunch Symbols)

Type Code Size of
Decimal
Digit

Comments

Leading
Separate
Sign

Trailing
Separate
Sign

Packed
Decimal

Leading
Embedded
Sign

Trailing
Embedded
Sign

A plus sign (+) or a space represents a
positive number. Operations generate +.
A minus sign (-) represents a negative
number.

Same as leading separate sign.

Each four bits represent a digit in
binary-coded decimal form. The right
most four bits represent the sign of the
entire decimal field: bit values 1100 =
plus, bit values 1101 = minus.

A single character represents a digit and
the sign of the field. When more than
one character is listed, all are recognized
but only the first is given in the result
field.

Embedded sign characters have the
following meanings:

Digit Positive Negative

0 0,+ { - ,)
1 1A
2 2B
3 3C
4 4D
5 5E
6 6F
7 7G
8 8H
9 91

B-38 First Edition

Error Messages

The following categories of error messages can be generated when you compile and run
COBOL85 programs. These messages appear on the screen if you interactively compile and
run the program:

• COBOL85 compile time error messages
• COBOL85 runtime error messages
• PRIMOS error messages

Compile Time Error Messages
These messages are displayed on the screen. They are also stored in the file program.ERROR
and inserted after the source listing, if you specify either the -LISTING or the -ERRORFILE
option at compile time. The format of compile time error messages is explained in the section
Compiler Error Messages, in Chapter 2. For example,

ERROR 407 SEVERITY 2 LINE 15 COLUMN 19 [WARNING, SEMANTICS]
The initial value for "A9" exceeds the range of values allowed by
the PICTURE or by the default implementation size. The initial value
may be truncated or unpredictable.

[1 WARNING IN PROGRAM: TRUNCATE.C0B0L85]

ERROR 300 SEVERITY 3 LINE 25 COLUMN 40 [FATAL, SYNTAX]
"PICTURE" found when expecting one of {"RIGHT").

[syntax checking suspended at THE RESERVED WORD "PICTURE"]

ERROR 64 SEVERITY 3 LINE 25 COLUMN 12 [FATAL, SEMANTICS]
This clause has been specified more than once in this entry.

ERROR 329 SEVERITY 3 LINE 77 COLUMN 16 [FATAL, SEMANTICS]
"ACCT-IN" is an undefined data reference.

r First Edition C-1

COBOL85 Reference Guide

ERROR 347 SEVERITY 1 LINE 80 COLUMN 26 [OBSERVATION, SEMANTICS]
The section that immediately contains the RELEASE statement was not
named as an input procedure associated with a SORT or MERGE statement.
Check that the perform range of the applicable procedure contains
this section.

[3 FATALS 1 OBSERVATION IN PROGRAM: <MYMFD>MYDIR>FATAL.ERROR.COBOL85]

The compile time error messages are self-explanatory. If you encounter a SEVERITY 4
message, recompile the program after eliminating all other error messages. Recompilation
usually eliminates the SEVERITY message also. If a SEVERITY 4 message persists, consult
a Prime System Analyst.

COBOL85 Runtime Error Messages
These messages are displayed when, for example, subroutines called by COBOL85 cannot
perform operations such as file l-O. The message, which is self-explanatory, describes the
error and file involved, and gives the name of the subroutine that raised the error condition.
If applicable, the message also includes the PRISAM, PRIMOS, MIDASPLUS, or MAGLIB
error code. The format of the runtime error message is

Fatal Error on <

fOPEN
READ
WRITE
START
CLOSE
DELETE
REWRITE

TO
INPUT
OUTPUT
EXTEND

Status Code: {num}
r PRISAM ^
PRIMOS I „__ .
MAGLIB f CODE: {n"m)
MIDASPLUSj

[ERRORTEXT]
T E$ message from PRIMOS] pathname (caller)

Examples of runtime error messages follow:
Fatal Error on OPEN INPUT. Status Code: 39.

The file ORGANIZATION specified (INDEXED) does not match the actual file
ORGANIZATION found for this file (RELATIVE).
MYRELFILE (CB$OPEN)
ER!

Fatal Error on READ. Status Code: 47.

Attempted READ from file not open in INPUT or 1-0 mode.
MYFILE (CB$RS)
ER!

Fatal Error on WRITE. Status Code: 99. PRISAM Code: 212.
MYFILE.PRISAM (CB$WS)
ER!

C-2 First Edition

~ >

~

Error Messages

Fatal Error on OPEN INPUT. Status Code: 30. PRIMOS Code: 10.
Insufficient access rights. *>NO_RIGHTS>YOURFILE (CBSOPEN)
ER!

Fatal Error on OPEN INPUT. Status Code: 35.
Not found. MYFILE (CBSOPEN)
ER!

Fatal Error on OPEN INPUT. Status Code: 39.

Midasplus has no information for minimum and maximum variable length record
sizes for this file. Use CREATK Initialize Function if file is empty; or Get
Function for non-empty files.
MYFILE.MIDAS (CBSOPEN)
ER!

Fatal Error on OPEN INPUT. Status Code: 39.

The maximum or minimum record sizes specified in program exceed the actual
minimum or maximum record sizes found for this file:

Program minimum: 88wds Actual minimum: 50wds
Program maximum: 175wds Actual maximum: 175wds

MYFILE.MIDAS (CBSOPEN)
ER!

MIDASPLUS error codes and messages are listed numerically in the MIDASPLUS User's
Guide. For more information on PRISAM error codes, see Appendix D and the PRISAM
User's Guide. For a complete discussion of COBOL85 file status codes, see Chapter 4.

PRIMOS Error Messages

r

r
r

These messages are generated by PRIMOS, the Prime operating system. They are explained
in the PRIMOS User's Guide. An example is

ERROR: condition POINTER_FAULTS raised at 4011(3)1011

In this case, a sort program was run without loading VSRTLI.

Common System Runtime Messages
The following system error conditions can occur during execution of a COBOL85 program.

ACCESS_VIOLATIONS$ The run unit or runfile attempted to violate the CPU access rules.
This condition aborts the run unit and can be caused by a variety of
factors. One common cause is reference to a table with an out-of-
range subscript. Use the -RANGE option to locate the statement that
caused the subscript to go out of range.

ARITH$ An arithmetic exception involved data overflow of fixed or floating
point operands. This condition can occur only if the
-SIGNALERRORS option was specified, or for an exponential oper
ation. The run unit aborts. If -SIGNALERRORS was not specified,
execution of the run unit continues with truncation of the value that
would have caused the exception. A division by zero causes this con
dition to occur when -SIGNALERRORS is specified.

First Edition C-3

COBOL85 Reference Guide

ERRORS

LINKAGE_FAULT$

OUT_OF_BOUNDS$
POINTER_FAULT$

ERROR

A conversion involving illegal characters was attempted. Implicit
conversions can occur in COBOL85 programs when fields of differ
ent types are moved. The run unit aborts. In general, this condition
does not occur unless the -SIGNALERRORS compile-time option
was specified. Recompiling the program with the READY TRACE
statement, or recompiling with the -DEBUG option and then execut
ing the run unit under Debugger control, helps to locate the illegal
conversion.
An unsnapped link (unresolved call) was encountered but the refer
ence could not be found in the system entry point table. The run unit
aborts. Either not enough libraries were loaded or a program refer
enced in a COBOL85 CALL statement was not loaded when this run
unit was linked with the BIND or SEG utility. If a map was created
when the run unit was linked, check it for unresolved entries. Other
wise, invoke BIND or SEG again and, after LI, enter MAP 3.
See ACCESS_VIOLATION$.
A reference was made to an Indirect Pointer (IP) but the pointer does
not appear to be valid. The run unit aborts. The most likely cause is a
link base that was destroyed by a MOVE statement with out-of-range
subscripts. Recompile with the -RANGE option.
This condition can be caused by a variety of errors, but if the pro
gram is compiled with -RANGE and an out of bounds reference is
found, this condition is preceded by a message containing the line
number and subscript value where the invalid array reference
occurred.

C-4 First Edition

PRISAM to COBOL85 Status Code Mapping

This appendix includes three tables listing PRISAM status codes and their corresponding
COBOL85 status codes. The tables are sorted as follows:

• Table D-l numerically sorts the COBOL85 status codes.
• Table D-2 numerically sorts the PRISAM status codes.
• Table D-3 alphabetically lists the PRISAM status names that translate to COBOL85

status codes.

Descriptions of the COBOL85 status codes can be found in Chapter 4. For more information
on PRISAM status codes, see the PRISAM User's Guide.

TABLE D-1
PRISAM to COBOL85 Status Code Mapping Sorted Numerically by COBOL85 Status Code

r COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

00 OKSOKS PRISAM function successfully completed

10 24 ERSHOF High end of file

10 25 ERSLOF Low end of file

22 141 ER$KNM Key cannot be modified during update

22 137 ERSNDA No duplicate keys allowed

23 23 ERSNFD Record not found

24 153 ERSIRN Invalid relative record number

r
r

30 ERSDKF Disk is full or maximum quota exceeded
(indexed or relative files)

First Edition D-1

COBOL85 Reference Guide

TABLE D-1
PRISAM to COBOL85 Status Code Mapping Sorted Numerically by COBOL85 Status Code
- Continued

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

34 ERSDKF Disk is full or maximum quota exceeded
(sequential files)

43 148 ERSRNL Record not active

44 129 ERSRBL Invalid record buffer length

46 130 ERSNCR No current record position

97 184 ER$ABT Transaction was aborted

97 185 ERSTAB Transaction timeout abort

97 183 ERSTIM Timeout occurred

99 170 ER$AIF Active AI file is full

99 187 ERSAPP PRISAM process was aborted > * ^

99 188 ERSAPS PRISAM system was aborted

99 171 ER$BIO BI file overflow

99 207 ER$BKI Bad key information

99 193 ER$CLT File close invalid during transaction

99 234 ERSDDM Unspecified DDM error
- ^

99 161 ER$DEX Maximum number of duplicates exceeded

99 182 ERSDLK Record deadlock detected

99 202 ERSFAB File access aborted

99 215 ER$FBS Invalid found key buffer length

99 216 ERSFBT Found key value truncated

99 20 ERSFCD Invalid function code

99 134 ER$FID Invalid file indcntifier

99 194 ER$IDB Invalid decimal digit in key

D-2 First Edition

PRISAM to COBOL85 Status Code Mapping

TABLE D-1
PRISAM to COBOL85 Status Code Mapping Sorted Numerically by COBOL85 Status Code
- Continued

r

r

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

99 196 ERSIDD

99 195 ER$IDS

99 232 ERSIDT

99 168 ERSIFF

99 213 ERSIFU

99 205 ERSINF

99 191 ERSIOM

99 142 ERSIPK

99 21 ERSKBS

99 204 ERSKDB

99 22 ERSKRB

99 206 ERSNKF

99 181 ERSNOI

99 180 ERSNOU

99 233 ERSNRR

99 135 ERSNUK

99 189 ERSPNA

99 190 ERSPNP

99 12 ERSPRI

99 222 ERSROM

99 231 ERSRSU

99 217 ERSRTV

Invalid packed decimal digit in key

Invalid decimal sign in key

Invalid distributed transaction

Invalid file organization

Insufficient PRIMOS file-units

Invalid key information length

File in extend only mode cannot be read

Invalid partial key value

Invalid key buffer length

Key descriptor block too small

Invalid key of reference number

No such key defined in the file

File not opened for inserting records

File not opened for updating records

No remote receive

No unique matching key definition

PRISAM system not available

PRISAM system not available to process

Nonspecific PRIMOS error

Nonspecific ROAM error

Remote system unavailable

Update invalid in retrieval transaction

First Edition D-3

COBOL85 Reference Guide

TABLE D-2
PRISAM to COBOL85 Status Code Mapping Sorted Numerically by PRISAM Status Number

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

00 OKOK PRISAM function successfully completed

30 ER$DKF Disk is full or maximum quota exceeded
(indexed or relative files)

34 ER$DKF Disk is full or maximum quota exceeded
(sequential files)

99 12 ERSPRI Nonspecific PRIMDS error

99 20 ERSFCD Invalid function code

99 21 ER$KBS Invalid key buffer length

99 22 ER$KRB Invalid key of reference number

23 23 ERSNFD Record not found

10 24 ER$HOF High end of file

10 25 ERSLOF Low end of file

44 129 ERSRBL Invalid record buffer length

46 130 ER$NCR No current record position

99 134 ER$FID Invalid file identifier

99 135 ER$NUK No unique matching key definition

22 137 ER$NDA , No duplicate keys allowed

22 141 ERSKNM Key cannot be modified during update

99 142 ER$IPK Invalid partial key value

43 148 ERSRNL Record not active

24 153 ER$IRN Invalid relative record number

99 161 ERSDEX Maximum number of duplicates exceeded

99 168 ERSEFF Invalid file organization

99 170 ERSAIF Active AI file is full
■ " ^

D-4 First Edition

PRISAM to COBOL85 Status Code Mapping

TABLE D-2
PRISAM to COBOL85 Status Code Mapping Sorted Numerically by PRISAM Status Number
- Continued

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

r

99 171 ERSBIO

99 180 ERSNOU

99 181 ER$NOI

99 182 ERSDLK

97 183 ERSTIM

97 184 ER$ABT

97 185 ERSTAB

99 187 ER$APP

99 188 ERSAPS

99 189 ER$PNA

99 190 ERSPNP

99 191 ER$IOM

99 193 ER$CLT

99 194 ERSIDB

99 195 ER$IDS

99 196 ERSIDD

99 202 ERSFAB

99 204 ERSKDB

99 205 ERSINF

99 206 ERSNKF

99 207 ERSBKI

99 213 ERSIFU

99 215 ERSFBS

BI file overflow

File not opened for updating records

File not opened for inserting records

Record deadlock detected

Timeout occurred

Transaction was aborted

Transaction timeout abort

PRISAM process was aborted

PRISAM system was aborted

PRISAM system not available

PRISAM system not available to process

File in extend only mode cannot be read

File close invalid during transaction

Invalid decimal digit in key

Invalid decimal sign in key

Invalid packed decimal digit in key

File access aborted

Key descriptor block too small

Invalid key information length

No such key defined in the file

Bad key information

Insufficient PRIMOS file-units

Invalid found key buffer length

First Edition D-5

COBOL85 Reference Guide

TABLE D-2
PRISAM to COBOL85 Status Code Mapping Sorted Numerically by PRISAM Status Number
- Continued

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

99 216 ER$FBT Found key value truncated

99 217 ERSRTV Update invalid in retrieval transaction

99 222 ER$ROM Nonspecific ROAM error

99 231 ER$RSU Remote system unavailable

99 232 ERSIDT Invalid distributed transaction

99 233 ER$NRR No remote receive

99 234 ER$DDM Unspecified DDM error

TABLE D-3
PRISAM to COBOL85 Status Code Mapping (Sorted Alphabetically by PRISAM Status Name)

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

97 184 ERSABT Transaction was aborted

99 170 ERSAIF Active AI file is full

99 187 ERSAPP PRISAM process was aborted

99 188 ERSAPS PRISAM system was aborted

99 171 ER$BIO BI file overflow

99 207 ER$BKI Bad key information

99 193 ERSCLT File close invalid during transaction

99 161 ER$DEX Maximum number of duplicates exceeded

99 234 ERSDDM Unspecified DDM error

30 ERSDKF Disk is full or maximum quota exceeded
(indexed or relative files)

D-6 First Edition

PRISAM to COBOL85 Status Code Mapping

TABLE D-3
PRISAM to COBOL85 Status Code Mapping (Sorted Alphabetically by PRISAM Status Name)
- Continued

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

34 ER$DKF Disk is full or maximum quota exceeded
(sequential files)

99 182 ERSDLK Record deadlock detected

99 202 ERSFAB File access aborted

99 215 ERSFBS Invalid found key buffer length

99 216 ERSFBT Found key value truncated

99 20 ERSFCD Invalid function code

99 134 ERSFID Invalid file indentifier

10 24 ERSHOF High end of file

99 194 ERSIDB Invalid decimal digit in key

99 196 ERSIDD Invalid packed decimal digit in key

99 195 ERSIDS Invalid decimal sign in key

99 232 ERSIDT Invalid distributed transaction

99 168 ERSIFF Invalid file organization

99 213 ERSIFU Insufficient PRIMOS file units

99 205 ERSINF Invalid key information length

99 191 ERSIOM File in extend only mode cannot be read

99 142 ERSIPK Invalid partial key value

24 153 ERSIRN Invalid relative record number

99 21 ERSKBS Invalid key buffer length

99 204 ERSKDB Key descriptor block too small

22 141 ERSKNM Key cannot be modified during update

99 22 ERSKRB Invalid key of reference number

First Edition D-7

COBOL85 Reference Guide

TABLE D-3
PRISAM to COBOL85 Status Code Mapping (Sorted Alphabetically by PRISAM Status Name)
- Continued

COBOL85
Status
Code

PRISAM
Status
Number

PRISAM
Status
Name

Description

10 25 ERSLOF Low end of file

46 130 ERSNCR No current record position

22 137 ERSNDA No duplicate keys allowed

23 23 ER$NFD Record not found

99 206 ER$NKF No such key defined in the file

99 181 ERSNOI File not opened for inserting records

99 180 ER$NOU File not opened for updating records

99 233 ERSNRR No remote receive

99 135 ERSNUK No unique matching key definition

99 189 ER$PNA PRISAM system not available

99 190 ER$PNP PRISAM system not available to process

99 12 ERSPRI Nonspecific PRIMDS error

44 129 ERSRBL Invalid record buffer length

43 148 ER$RNL Record not active

99 222 ER$ROM Nonspecific ROAM error

99 231 ERSRSU Remote system unavailable

99 217 ERSRTV Update invalid in retrieval transaction

97 185 ERSTAB Transaction timeout abort

97 183 ER$TIM Timeout occurred

00 OKOK PRISAM function successfully completed

D-8 First Edition

The Debugger Interface

~

'

r

r
r

The Source Level Debugger User's Guide documents the symbolic debugger. This appendix
describes the COBOL85 interface to the Debugger, and restrictions to debugging in COBOL85.

Overview
To use the Debugger with COBOL85, follow these steps:

1. Compile the program using the -DEBUG option. For example, if the program to be
debugged is RANDOM.COBOL85, enter the following:

OK, COBOL85 RANDOM -DEBUG

2. Link the program in the usual way:

OK, BIND
[BIND Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]

LO RANDOM
LI COBOL85LIB
L I

BIND COMPLETE
: FILE

3. The format to invoke the Debugger is

DBG RANDOM [option-1 [option-2]...)

If the program was compiled with the default loading steps described in Chapter 3, the
source filename may be used after DBG. Otherwise, use the runfile name.

4. Follow instructions in the the Source Level Debugger User's Guide. Note the following
special definitions:
• procedure-name and program-block-name mean the entire COBOL85 program

named by program-id. Separately called programs define other procedure-names or
program-block-names.

First Edition E-1

COBOL85 Reference Guide

Examples

• labels mean paragraph-names and section-names. For the Debugger, names that
begin with a number must be preceded by a dollar sign ($). Thus, 040-EDIT would
be entered as $040-EDIT

• Array elements are referred to by the array-name followed by the element number
within parentheses. Multiple subscripts are separated by commas. Thus, element 3
of the array TABLE 1 is referred to as TABLE 1(3). Element 3 of the second
dimension of TABLE2 is TABLE2(2,3).

• Elements with the same names must be referred to as

element-name OF group-name.

• There is no way to set a breakpoint on a paragraph-name that is not unique.
paragraph-names, therefore, may not be qualified by section-names in breakpoint
identifiers. Instead, set the breakpoint on the first statement in the paragraph.

• The Debugger does not accept numeric literals longer than 14 digits.
• LET cannot be used with edited data types.
• LET cannot be used with an index name or an index data item.
• Evaluation of abbreviated conditional expressions is not supported.
• Results of arithmetic operations on scaled binary values are incorrect if decimal

points are not aligned.
• Switches cannot be displayed.
• AssignmenLs are not right-justified to justified data items.
• Any source line with D in column 7 is executed.

5. To leave the Debugger, enter Q.

The first example uses the Debugger to examine data elements of the program -^
RANDOM.COBOL85 at the end of Chapter 10. The program uses three Debugger
commands: BRK to set a breakpoint, the colon (:) to display data values, and LET to modify
data values. Many other Debugger commands are discussed in the Source Level Debugger
User's Guide.
The Debugger allows the program to present the usual requests for file assignments. If the
program opens files, only C (continue) should be used after a breakpoint. RESTART may
cause the program to attempt to open files that are not closed.

OK, DBG RANDOM

Dbg revision 22 (25-March (c) Prime Computer 1988)

> BRK $200-CREATE-ERROR-FILE
> RESTART
trace: 010-PRINT-HEADINGS
trace: 020-PROCESS-TRANS
trace: 100-UPDATE
trace: 020-PROCESS-TRANS
trace: 110-ADD

E-2 First Edition

The Debugger Interface

**** breakpointed at RANDOM1M51 (S200-CREATE-ERROR-FILE)
> : PRINT-COUNT
PRINT-COUNT = 0
> ; ENTRY-CODE
ENTRY-CODE = 'D'
> ; NEW-CODE
NEW-CODE = ''
> : TRANS-ENTRY
TRANS-ENTRY.ACCT-ENTRY = '414'
TRANS-ENTRY.FILLER = '061185 PRIME COMPUTER 4360000123'
> LET PRINT-COUNT - 1
> C
trace: 200-CREATE-ERROR-FILE
trace: 020-PROCESS-TRANS
t race : 120-DELETE

**** breakpointed at RANDOM1U51 (S200-CREATE-ERROR-FILE)
> ; PRINT-COUNT
PRINT-COUNT = 2
> c

The next example illustrates the use of ED commands within the Debugger environment. The
command SRC NAME elicits the program-name of the program being debugged. The
command SRC L PROC causes ED to locate the first instance of PROCEDURE. The
command SRC PI5 causes ED to display 15 lines of source code.

OK, DBG RANDOM

Dbg revision 22 (25-March (c) Prime Computer 1988)

> SRC NAME
Source file is "<PUBS>EVELYN>RANDOM.COBOL85", based on evaluation environment.
> SRC L PROC

95: PROCEDURE DIVISION.
> SRC P15

95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

> Q
OK,

PROCEDURE DIVISION.
*
•DECLARATIVES.
* THIS SECTION SHOULD DISPLAY FILE-STATUS FOR ANY ERRORS
* NOT CAUGHT BY INVALID KEY OR AT END CLAUSES.
*END DECLARATIVES.

000-MAINLINE.
READY TRACE.
OPEN INPUT TRANS-FILE,

1-0 MASTER-FILE,
1-0 NEW-FILE,
OUTPUT PRINT-FILE.

PERFORM 010-PRINT-HEADINGS.
READ TRANS-FILE AT END

r
First Edition E-3

Prime Support of the ANSI Standard

COBOL85 implements the intermediate level Qevel 1) of American National Standards
Institute (ANSI) COBOL, as defined in the document American National Standard
Programming Language COBOL X3.23-1985, published by the American National
Standards Institute, New York, 1985. COBOL85 also implements a number of high-level
(level 2) features of Standard COBOL. This appendix lists all of the Standard COBOL
features available in COBOL85.

Prime has added a number of extensions to the ANSI standard. Throughout this book, Prime
extensions are printed in red to identify them as such. This appendix also lists all of these
extensions.

Standard COBOL Features in COBOL85

ANSI Module Features Available in COBOL85

Nucleus Full level 2, with these exceptions:

Reference modification
SYMBOLIC CHARACTER
ALPHABET-NAME IS literal
END-PROGRAM
ACCEPT multiple transfers
ACCEPT DAY-OF-WEEK
EVALUATE
INITIALIZE
INSPECT witli CONVERTING phrase
PERFORM with TEST phrase
PERFORM with unlimited AFTER
SET condition-name TO TRUE
MOVE with de-editing

r First Edition F-1

COBOL85 Reference Guide

ANSI Module

Sequential 1-0

Relative 1-0

Indexed 1-0

Interprogram
Communication

Sort-merge

Source Text
Manipulation

Report-Writer

Debug

Communication

Features Available in COBOL85

Full level 2, with these exceptions:

LINAGE
PADDING CHARACTER
RECORD DELIMITER
RECORD IS VARYING DEPENDING ON
CLOSE FOR REMOVAL/LOCK

Full level 2, with these exceptions:

OPTIONAL (l-O and EXTEND modes)
EXTEND mode
RECORD IS VARYING DEPENDING ON
CLOSE with LOCK phrase
REWRITE records of unequal lengths

Full level 2, with these exceptions:

OPTIONAL (l-O and EXTEND modes)
EXTEND mode
RECORD IS VARYING DEPENDING ON
CLOSE with LOCK phrase
REWRITE records of unequal lengths
READ not required for REWRITE with secondary keys
(dynamic/random)

Full level 2, with these exceptions:

Nested source programs
COMMON
INITIAL
GLOBAL
CALL BY REFERENCE/CONTENT
CALL ON OVERFLOW/EXCEPTION
CANCEL

Full level 2, with this exception:

RECORD IS VARYING DEPENDING ON

Full level 2, with this exception:

REPLACE

Not included

Not included

Not included

F-2 First Edition

Prfrns Support of the ANSI Standard

Prime Extensions to the ANSI Standard
The -STANDARD compiler option causes the compiler to issue observations when the
COBOL85 source code contains Prime extensions to the ANSI standard.
The basic format for observations generated when you specify -STANDARD is

ERROR 5XX SEVERITY 1 LINE...

Prime extension: <explanatory message>

The following sections list Prime extensions to ANSI COBOL 85.

All Program Divisions

• Missing periods on defined divisions, sections, and paragraph headers are allowed.
• Support of EJECT as a compiler-directing statement is provided.
• Support of SKIP1, SKIP2, and SKIP3 as compiler-directing statements is provided.
• Support of the single quote character in place of the double quote character is provided.

IDENTIFICATION DIVISION

• Optional ID DIVISION entries are allowed to be out of order.
• Support of the REMARKS paragraph in the ID DIVISION is provided.
• ID is allowed as an abbreviation for IDENTIFICATION.

ENVIRONMENT DIVISION

• ENVIRONMENT DIVISION entries are allowed to be out of order.
• Empty FILE-CONTROL paragraph is allowed.
• The FILE-STATUS entry is allowed to be numeric.

DATA DIVISION

• Missing terminating periods on data-descriptions not ending with a VALUE clause are
allowed.

• Specification of the FILLER clause on a level 01, group item, or redefined item is
allowed.

• Specification of the OCCURS clause on an 01 level is allowed.
• Specification of the COMPRESSED and UNCOMPRESSED phrases in the FD entry is

allowed.
• Specification of COMP-1 and COMP-2 as floating point descriptions in the USAGE

clause is allowed.
• Support of an eighth level of subscripting is provided.

First Edition F-3

COBOL85 Reference Guide

• Support of subscripted variables as subscripts is provided.
• Support of qualified index-names as subscripts is provided.
• Specification of non-01 level numbers in Area A is allowed.
• Support of the underscore character in user-defined words is provided.
• Support of user-defined words with underscores and no alphabetic characters is

provided.
• Support of COMP-3 as a synonym for PACKED-DECIMAL is provided.
• Support of hyphens at the end of user-defined words is provided.
• RECORDING MODE IS clause is supported.

PROCEDURE DIVISION

• Nonnumeric literals may be specified using mnemonic-codes through the support of
backslash (\) in the character set.

• Support of EXHIBIT NAMED as a PROCEDURE DIVISION verb is provided.
• Support of the GOBACK statement as a synonym for EXIT PROGRAM is provided.
• Specification of the ROUNDED clause on numeric MOVEs is allowed.
• Support of the NOTE statement as a comment entry in the PROCEDURE DIVISION is

provided.
• Specification of the OTHERWISE phrase in the IF statement is allowed.
• Support of the READY TRACE and RESET TRACE statements as debugging tools in

the PROCEDURE DIVISION is provided.
• Support of arithmetic expressions in place of data-names for ADD, SUBTRACT,

MULTIPLY, DIVIDE, COMPUTE, GO TO... DEPENDING ON, MOVE,
PERFORM...VARYING, SET, and IF statements as well as indexing and subscripting
is provided.

• Specification of the CORRESPONDING clause on the IF, MULTIPLY, DIVIDE, and
COMPUTE statements is allowed.

• Support of literals as operands of some clauses of the INSPECT statement is provided.
• Support of passing subgroup data items through the CALL statement is provided.
• The PROGRAM-ID and DATE-COMPILED entries are allowed to be referenced in the

PROCEDURE DIVISION.
• The reserved word ERROR is always optional in the ON SIZE ERROR clause.
• Support of Area A for PROCEDURE DIVISION statements that contain only one

reserved word in Area A is provided.
• The reserved word SENTENCE in the NEXT SENTENCE phrase is optional.
• data-name operands that contain a REDEFINES clause can be specified in the USING

clause of the PROCEDURE DIVISION header.
• Optional spaces around arithmetic operators arc allowed.

F-4 First Edition

Obsolete Language Elements

The -ANSI_OBSOLETE compiler option causes the compiler to generate observations for all
language elements that ANSI X3.23-1985 includes on the obsolete language element list. The
presence of an element on this list means that the element will not appear in the next ANSI
COBOL standard. This does not imply that the element will be removed from future
revisions of Prime COBOL85.
The basic format for observations generated when you specify -ANSI_OBSOLETE is

ERROR 550 SEVERITY 1 LINE...
Use of the <statement, clause, literal, or paragraph> has been placed
in the obsolete element category of ANSI X3.23-1985 and will become obsolete at
the next revision of the ANSI standard.

The following COBOL85 language elements are on the ANSI obsolete element list:

• ALL literal with numeric or numeric edited items
When the literal ALL is used with literals longer than one character that are being sent
to numeric or numeric edited data items, the compiler issues an observation.

• AUTHOR, INSTALLATION, DATE-WRITTEN, DATE-COMPILED and SECURITY
paragraphs
When any of these paragraphs is specified in the ID DIVISION, the compiler issues an
observation.

• MEMORY SIZE clause
The MEMORY SIZE clause currently only serves as documentation to the OBJECT-
COMPUTER paragraph and is checked for proper syntax. When this clause is specified
in the OBJECT-COMPUTER paragraph, the compiler issues an observation.

• RERUN clause
The RERUN clause is currently checked only for syntax in the I-O-CONTROL
paragraph. When this clause is specified in the I-O-CONTROL paragraph, the compiler
issues an observation.

• MULTIPLE FILE TAPE clause
When this clause is specified in the I-O-CONTROL paragraph, the compiler issues an
observation.

First Edition G-1

COBOL85 Reference Guide

G-2 First Edition

LABEL RECORDS clause
When this clause is specified in an FD entry, the compiler issues an observation.
VALUE OF clause
When this clause is specified in an FD entry, the compiler issues an observation.
DATA RECORDS clause
When the DATA RECORDS clause is specified in an FD entry, the compiler issues an
observation.
ALTER statement
When the ALTER statement is used, the compiler issues an observation.
ENTER statement
The compiler generates a warning stating that the ENTER statement is not supported in
this implementation. When the ENTER statement is used, the compiler also issues an
o b s e r v a t i o n . / _ _ ^
Optional paragraph-name in GO TO statement
A GO TO statement without a paragraph-name must be acted upon by an ALTER
statement prior to the execution of the GO TO statement. Therefore, when a GO TO
statement is used without the corresponding paragraph-name, the compiler issues an
observation.
REVERSED phrase of the OPEN statement
The REVERSED phrase of the OPEN statement generates a fatal error stating that it is
not implemented. In addition to the fatal error, the compiler issues an observation.
S T O P l i t e r a l s t a t e m e n t %
When the STOP literal statement is used, the compiler issues an observation.
Segmentation module
When segment numbers are specified after a section-name and the reserved word
SECTION, the compiler issues an observation.

Conversion From CBL to COBOL85

If you wish to take advantage of new COBOL85 functionality in an existing CBL program,
you must first convert the CBL program to COBOL85. Then you must recompile and relink
the program before you execute it. If the resulting COBOL85 program is larger than one
segment, you must use BIND to link and execute it. If your program is less than one segment,
you may use either BIND or SEG.
COBOL85 contains 112 new reserved words, 21 new 1-0 status codes, and many new error
conditions that are handled differently from the way CBL handles them. You must be aware
of these differences when you convert a CBL program to C0B0L85.
C0B0L85 also contains other features not available in CBL that you may wish to use in your
converted CBL program.
This appendix documents the differences between CBL and COBOL85 that may require
attention during program conversion. For additional information see the CBL to COBOL85
Conversion Program Guide.

New Reserved Words
COBOL85 has 112 new reserved words. If your CBL program uses any of these reserved
words as identifiers, COBOL85 flags each such occurrence as a fatal error. Replace all such
occurrences of COBOL85 reserved words with new identifier names. The following list
contains the reserved words that are new in COBOL85:

r
r

ALPHABETIC-LOWER
ALPHANUMERIC-EDITED
CD
CLASS
COLUMN
CONTENT
CONTROLS
DE
DEBUG-LINE
DEBUG-SUB-2
DETAIL

ALPHABETIC-UPPER
ANY
CF
COBOL
COMMON
CONTINUE
CONVERTING
DEBUG-CONTENTS
DEBUG-NAME
DEBUG-SUB-3
DISABLE

ALPHANUMERIC
BINARY
CH
CODE
COMMUNICATION
CONTROL
DAY-OF-WEEK
DEBUG-ITEM
DEBUG-SUB-1
DESTINATION
EG!

First Edition H-1

COBOL85 Reference Guide

EMI
END-CALL
END-DIVIDE
END-MULTIPLY
END-RECEIVE
END-SEARCH
END-SUBTRACT
ESI
FINAL
GROUP
INITIALIZE
LENGTH
LINAGE-COUNTER
NUMBER
PACKED-DECIMAL
PF
PRINTING
RD
REPLACE
REPORTS
SEGMENT
STANDARD-2
SUB-QUEUE-3
SYMBOLIC
TERMINATE
TRUE

ENABLE
END-COMPUTE
END-EVALUATE
END-PERFORM
END-RETURN
END-START
END-UNSTRING
EVALUATE
GENERATE
HEADING
INITIATE
LIMIT
LINE-COUNTER
NUMERIC-EDITED
PADDING
PH
PURGE
RECEIVE
REPORT
RF
SEND
SUB-QUEUE-1
SUM
TABLE
TEST
TYPE

END-ADD
END-DELETE
END-IF
END-READ
END-REWRITE
END-STRING
END-WRITE
FALSE
GLOBAL
INDICATE
LAST
LIMITS
MESSAGE
OTHER
PAGE-COUNTER
PLUS
QUEUE
REFERENCE
REPORTING
RH
SOURCE
SUB-QUEUE-2
SUPPRESS
TERMINAL
TEXT
<=

See Table B-2 in Appendix B for a complete list of COBOL85 reserved words.

New 1-0 Status Codes and Error Handling
COBOL85 contains 21 new 1-0 status codes and has slightly changed meanings for several
other existing status codes. COBOL85 recognizes many new error conditions that are handled
differently from the way CBL handles them. This may cause conversion problems depending
on the application.

For example, a CBL program may check for specific status codes that are no longer
meaningful or whose meaning has changed. Consequently, the program may invoke a USE
procedure to handle errors that the USE procedure was not designed to handle. This
discrepancy, in turn, may affect program behavior depending on the application.
This section lists all COBOL85 1-0 status codes, and discusses differences between the
meanings of each code in CBL and COBOL85 that may require attention during program
conversion.

Note
For complete definitions of COBOL85 1-0 status codes, and a complete discussion of error
recovery, see Chapter 4.

H-2 First Edition

Conversion From CBL to COBOL85

Status Code 00
No conversion concerns. The meaning of this status code in COBOL85 is the same as its
meaning in CBL.

Status Code 02 (Indexed)
CBL allows duplicate keys on a READ, WRITE, or REWRITE, and returns status code 00.
COBOL85 returns status code 02 when it detects duplicate keys. If a program checks for 00
following any of these statements, and duplicate keys are a possibility in the application,
modify the program to check for status code 02.

Status Code 04 (Sequential, Relative, Indexed)
CBL programs that check the file status for 00 to indicate a successful READ for variable-
length records must be modified. However, modification is required only for programs that
process filetypes for which size conflicts are permissible in CBL. Some size conflicts are
ignored in CBL; some generate an invalid key condition; some generate a runtime abort. See
Tables H-l through H-4 for a complete list of record size conflict differences between CBL
and COBOL85.

Status Code 05 (Sequential, Indexed, Relative)
CBL programs that open, in 1-0 mode or EXTEND mode, sequential disk files that do not
exist prior to program execution must be modified to describe such files as OPTIONAL in
the SELECT clause in order for COBOL85 to create them. Any associated checking for a file
status of 00 that is done after the OPEN must be modified.

Status Code 07 (Sequential)
No conversion concerns. CBL issues a fatal diagnostic at compile time for optional phrases
on an OPEN or CLOSE statement.

Status Code 10 (Sequential, Relative, Indexed)
No conversion concerns. Although the second meaning for status code 10 is new in
COBOL85, CBL docs not support OPTIONAL, so such a program fails at OPEN time if an
input file does not exist.

Status Code 14 (Relative)
If a relative key data item is not large enough to contain the key value of the record read, in
CBL the record is returned, the relative key data item overflows, and the file status item is set
to 00. The value returned to the relative key data item is undefined. In COBOL85 the record
is not returned; the file status item is set to 14; the imperative statement following AT END
is executed (or a USE procedure is invoked if no AT END clause exists); and the value of the
relative key data item is undefined.

First Edition H-3

COBOL85 Reference Guide

Status Code 21 (Indexed)
When a READ statement is required prior to a REWRITE, and the primary key value is
changed by the program between the successful execution of a READ and the execution of
the next REWRITE statement for the file, CBL returns status code 22. COBOL85 returns 21
to signal this condition.
CBL does not check that the successive primary record key values are in ascending order
during a WRITE operation for a sequentially accessed file; CBL writes the record to the file.
COBOL85 does such a check, and returns status code 21 if successive primary record key
values are not in ascending order.

Status Code 22 (Relative, Indexed)
Creating invalid duplicate alternate keys returns a 92 in CBL for MIDASPLUS files.
Also, using the DUPLICATES phrase specified in the program is new in COBOL85. If a
CREATK specification allows DUPLICATES, but the program does not specify
DUPLICATES, the record is not written in COBOL85, but the record is written in CBL.

Status Code 23 (Relative, Indexed)
No conversion concerns. Although the second meaning for status code 23 is new in
COBOL85, CBL does not support OPTIONAL, so such a program fails at OPEN time if an
input file does not exist.

Status Code 24 (Relative)
If a program attempts to write beyond the externally defined boundaries of a relative file,
CBL returns status code 96. COBOL85 returns 24 to signal this condition.
When a sequential WRITE statement is attempted for a relative file and the number of
significant digits in the relative record number is larger than the size of the relative key data ̂ __
item described for the file, CBL gives varying results depending on the sizes being used. In
most cases, CBL does not write the record, and returns status code 22. COBOL85 does not
write the record, but returns status code 24; the imperative statement following INVALID
KEY is executed (or a USE procedure is invoked if no INVALID KEY clause exists); and
the value of the relative key data item is undefined.
Also, CBL writes the record based on the size of the relative key data item described in the
program and in conjunction with the size of the CREATK primary key definition. Overflow
is controlled by these two factors. It is not checked explicitly. COBOL85 writes the record
based on the size of the relative key data item, and explicitly checks for overflow.

Status Code 30 (Sequential, Relative, Indexed)
When CBL returns status code 30, the INVALID KEY path is taken for indexed and relative
files; declaratives, if present, arc invoked for sequential files; and control returns to the next
executable statement. If declaratives are not present and are required, the program terminates. ̂ ^^
In COBOL85, after executing declaratives, if present, the program terminates.

H-4 First Edition

Conversion From CBL to COBOL85

Also, in CBL a badspot error for magnetic tape files generates a status code 30. In COBOL85
a badspot error generates a status code 98.

Status Code 34 (Sequential)
When an attempt is made to write beyond the externally defined boundaries of a sequential
file, CBL returns status code 30. COBOL85 returns 34 to signal this condition.
Also, in CBL, declaratives, if present, are invoked, and control returns to the next executable
statement. In COBOL85, after executing declaratives, if present, the program terminates.

Status Code 35 (Sequential, Indexed, Relative)
In CBL implied OPTIONAL support exists for PRIMOS sequential files only. (That is, a file
is created if opened in 1-0 or EXTEND mode for PRIMOS sequential files). In COBOL85
the OPTIONAL phrase must be specified in the SELECT clause to achieve this functionality;
otherwise, a status code 35 is generated for a sequential file that does not exist when opened
in 1-0 or EXTEND mode.
Also, in CBL an OPEN of a magnetic tape file that does not locate the correct file-ID on the
reel, aborts in such a way that the user is allowed the opportunity to mount another volume
and retry the operation. In COBOL85, after invoking any declaratives for status code 35, the
program terminates.

Status Code 37 (Sequential, Relative, Indexed)
In CBL a file assigned to PFMS in a program that has WRITE WITH ADVANCING
statements can be opened in EXTEND mode. COBOL85 does not support this functionality.
In CBL an indexed or relative file can be opened in OUTPUT mode and contain existing
records. WRITE statements add records to the file and may be rejected if an attempt is made
to add duplicate primary keys. The integrity of the file cannot be assured. In COBOL85 this
error condition is recognized, and the 1-0 system ensures that the file does not contain
existing records.

Status Code 39 (Sequential, Relative, Indexed)
In CBL there is virtually no checking for file attribute conflicts. In some cases, it is possible
that executing a program with an undetected file attribute conflict could be a meaningful
application, depending on the particular conflict. In C0B0L85 checking of attributes
prohibits such programs from running, which ensures consistent and expected runtime
behavior.
For example, in CBL, key types specified in CREATK are not checked against the key type
specified in the source program. Depending on the key types and lengths involved, it is
possible that the program could access a file properly. However, it is also possible that a
corrupted file may result. COBOL85 does not allow the file to be opened.
See Tables H-l through H-4 for a complete list of record size conflict differences between
CBL and COBOL85. Sec also the discussion of status code 39 in Chapter 4 for a full list of
the file attributes that COBOL85 checks.

First Edition H-5

COBOL85 Reference Guide

Note
In order for COBOL85 to open a MIDASPLUS variable-length record file, you must first
establish the minimum and maximum size for the file by using cither the CREATK GET
function for files that already contain records, or the CREATK INIT function for empty files.
See the MIDASPLUS User's Guide for details.

Status Code 41 (Sequential, Relative, Indexed)
No conversion concerns. However, see Status Code 93, below.

Status Code 42 (Sequential, Relative, Indexed)
In CBL a CLOSE statement is ignored when the file is not open. COBOL85 returns status
code 42 to signal this condition.

Status Code 43 (Sequential, Relative, Indexed)
CBL returns status code 91 for an indexed REWRITE attempt without a successfully
executed READ. The ability to REWRITE without a prior READ for MIDASPLUS files that
do not have secondary keys is new in COBOL85.

For PRIMOS sequential files, CBL permits multiple REWRITES for the same record without
reestablishing the file position. COBOL85 disallows this practice by requiring a READ
before a REWRITE.

Status Code 44 (Sequential, Relative, Indexed)
See Tables H-l through H-4 for a complete list of record size conflict differences between
CBL and COBOL85.

Status Code 46 (Sequential, Relative, Indexed)
In CBL a READ NEXT statement following an unsuccessful START or READ statement
causes unpredictable results. A status code of 10 may be returned in some cases. COBOL85
returns status code 46 to signal this condition.

Status Code 47 (Sequential, Relative, Indexed)
No conversion concerns.

Status Code 48 (Sequential, Relative, Indexed)
In CBL a WRITE statement is allowed for a sequential file opened in 1-0 mode, or for a
sequential access indexed file opened in 1-0 mode. A WRITE statement is allowed for an
indexed or relative file in EXTEND mode (although unsupported at runtime). COBOL85
returns status code 48 to signal these conditions.

H-6 First Edition

Conversion From CBL to COBOL85

Status Code 49 (Sequential, Relative, Indexed)
No conversion concerns.

Status Code 82
No conversion concerns.

Status Code 90
No conversion concerns. The meaning of this status code in COBOL85 is the same as its
meaning in CBL.

Status Code 91
Obsolete. Replaced by status code 43.

Status Code 92
Obsolete. Replaced by status code 22.

Status Code 93
CBL returns status code 41 for a FORMS validation error on a READ statement. CBL does
not support status code 93.

Status Code 94
No conversion concerns. The meaning of this status code in COBOL85 is the same as its
meaning in CBL.

Status Code 95
Obsolete. See Status Code 04, 39, 44 and Tables H-l through H-4.

Status Code 96
Obsolete. Replaced by status code 24.

Status Code 97
No conversion concerns. The meaning of this status code in COBOL85 is the same as its
meaning in CBL.

Status Code 98
CBL returns status code 30 when an input-output operation is unsuccessful due to a
recoverable error associated with a tape file, such as a badspot on the tape. COBOL85 returns
status code 98 to signal this condition.

First Edition H-7

COBOL85 Reference Guide

Note
In CBL status code 98 is documented but not supported. The error condition that 98 is meant to
signal in CBL returns status code 39 in COBOL85.

Status Code 99
No conversion concerns. The meaning of this status code in COBOL85 is the same as its
meaning in CBL.

Other CBL/COBOL85 Differences Requiring Conversion
The following sections document other differences between CBL and COBOL85 that may
require attention during program conversion. The differences are grouped as follows:

• Compiler options
• ENVIRONMENT DIVISION
• DATA DIVISION
• PROCEDURE DIVISION

Compiler Options
This section discusses differences between CBL and COBOL85 compiler options. For a
discussion of all COBOL85 compiler options, see Chapter 2.

Removal of FIPS Flagging
COBOL85 docs not support FIPS nagging.

Note
The -STANDARD compiler option generates observations for all Prime extensions to the ANSI
standard. Sec Chapter 2 for details.

Removal of-UPCASE
COBOL85 does not support the -UPCASE compiler option. Except for quoted literals,
COBOL85 and CBL treat all source code as uppercase.

Removal of-OLDIO
COBOL85 does not support the -OLDIO compiler option. Therefore, the following CBL
functionality provided by -OLDIO to support Prime's older COBOL compiler is not
available in COBOL85:

" >

~

" >

H-8 First Edition

Conversion From CBL to COBOL85

• COMPRESSED default file attribute
In COBOL85 UNCOMPRESSED is the default file attribute. For more information on
COMPRESSED/UNCOMPRESSED, see Chapter 7.

WARNING
If your program reads a compressed file as uncompressed, a premature end of file results, and
data is transferred to seemingly inappropriate fields.

• INVALID KEY on sequential READ NEXT
In COBOL85 the INVALID KEY phrase is not allowed in a READ NEXT statement.
Remove any such occurrences.

• Optional AT END for READ of TERMINAL file
In COBOL85 the AT END phrase is optional; however, if you do not specify AT END,
then you must specify a USE procedure for the file.

• PRINTER filenames default to first four characters of PROGRAM-ID followed by a
sequence number
In COBOL85, if you do not specify the VALUE OF FILE-ID phrase for a file, the
compiler uses the internal filename defined in the SELECT clause as the default.

• Non-PRINTER filenames default lo Fl, F2 ... F9
In COBOL85, if you do not specify the VALUE OF RLE-ID phrase for a file, the
compiler uses the internal filename defined in the SELECT clause as the default.

• VALUE OF FILE-ID literal limited to 8 characters
In COBOL85 the VALUE OF FILE-ID literal is not truncated to 8 characters.

The ability to reassign files at runtime is still available in COBOL85, but is controlled by the
-FILE_ASSIGN compiler option instead of -OLDIO, as in CBL. For information on
-FILE_ASSIGN see Appendix N.

-VARYING Default
In COBOL85 -VARYING is the default compiler option for formatting variable-length
records.
In CBL records that are defined with multiple 01s of different sizes or that contain tables
with the OCCURS DEPENDING ON clause are not written out in variable-length format
unless -VARYING is specified. In order to process such files as fixed-length files in
COBOL85, -NO_VARYING must be specified, or the RECORD IS NOT VARYING clause
must be used in the file description.

ENVIRONMENT DIVISION

r
r

This section discusses COBOL85 ENVIRONMENT DIVISION features that differ from the
corresponding CBL features.

First Edition H-9

COBOL85 Reference Guide

alphabet-name Clause of SPECIAL-NAMES Paragraph
In COBOL85 the alphabet-name clause of the SPECIAL-NAMES paragraph includes the
new reserved word ALPHABET. CBL programs that contain this clause must be modified to
include the reserved word ALPHABET.

Obsolete Device Types
Device types of MT7, READER, and PUNCH are invalid in COBOL85. No runtime support
for these devices exists in CBL. Table 6-1 in Chapter 6 lists allowable COBOL85 device
types.

DATA DIVISION
This section discusses COBOL85 DATA DIVISION features that differ from the
corresponding CBL features.

Multiple Sign Clause
In CBL lite specification of a SIGN clause on a group item does not extend to that group's
subordinate data items. In COBOL85 the specification of a SIGN clause on a group item
does extend to that group's subordinate data items. In COBOL85 the specification of a SIGN
clause on a subordinate data item takes precedence over a SIGN clause specified at the group
level.

Propagation of USAGE Clause
In CBL the specification of a USAGE clause on a group item does not extend to that group's
subordinate data items when subgroups intervene. In COBOL85 the specification of a
USAGE clause on a group item does extend to that group's subordinate data items regardless
of its structure. If such structures occur in record descriptions, this may affect the size of the
record if the type of USAGE being propagated causes alternate size calculations to be made.

Redefined Items of Unequal Length
In CBL the Prime extension for allowing intervening data descriptions between the
redefining item and redefined item allows the redefining item to be greater than the redefined
item. In COBOL85 such redefinition causes a fatal error.

VALUE OF FILE-ID IS data-name
If the VALUE OF FILE-ID IS data-name clause is used, a search is made during the OPEN
operation to determine whether a file reassignment was made using the -FILE_ASSIGN
option. In CBL the VALUE OF FILE-ID IS data-name clause and file reassignments are
mutually exclusive. For example,

H-10 First Edition

Conversion From CBL to COBOL85

VALUE OF FILE-ID IS DATANAME.

01 DATANAME PIC X(32) VALUE 'MYFILE'.

ENTER FILE ASSIGNMENTS:
> MYFILE = YOURFILE
> /

In COBOL85 YOURFILE is opened. In CBL MYFILE is opened.

r PROCEDURE DIVISION

r

r
r

This section discusses COBOL85 PROCEDURE DIVISION features that differ from the
corresponding CBL features.

MOVE ON SIZE ERROR
The CBL Prime extension of specifying the ON SIZE ERROR clause for the MOVE verb is
not supported in COBOL85 because of conflicts with the ANSI X3.23-1985 standard syntax.
The same functionality is available in COBOL85 by using the COMPUTE verb as follows:
The CBL code

MOVE A TO B
ON SIZE ERROR DISPLAY 'SIZE ERROR'.

can be recoded as

COMPUTE B = A
ON SIZE ERROR DISPLAY 'SIZE ERROR'.

ALPHABETIC Class Condition
In COBOL85 the ALPHABETIC class test returns a result of true if the content of the
identifier consists of lowercase, uppercase, or space characters. In CBL only uppercase
characters are classified as ALPHABETIC.

Note
Using the new ALPHABETIC-UPPER class test can aid conversions of applications that require
uppercase testing exclusively.

OPEN OUTPUT
In COBOL85 if an indexed or relative file is opened in OUTPUT mode and the file exists, it
must not contain data, or the OPEN statement is in error. In CBL such a file is opened, and
any WRITE statements cause new records to be added to the existing file, providing
duplicate primary keys are not created.

First Edition H-11

COBOL85 Reference Guide

" >

Duplicate Alternate Keys
In CBL, if an alternate key is the key of reference during sequential access and duplicates
exist in the file, the records with duplicate alternate keys are read, even if the program
specifies that duplicates are not allowed. In COBOL85, however, the duplicate keys are
bypassed, and the next record returned is the first record in the file whose key value is greater
than the file position indicator.

Relative Record Numbers
In CBL the lowest relative record number that you can specify for a record in a relative file is
0. In COBOL85 the lowest relative record number that you can specify is 1. COBOL85
returns status code 24 if you attempt to WRITE a record with a relative record number less
than 1.

Opening an Indexed or Relative File in EXTEND Mode
Opening an indexed or relative file in EXTEND mode is explicitly disallowed in COBOL85.
A diagnostic is issued at compile time. In CBL the open mode is ignored.

NEXT SENTENCE
In COBOL85 the NEXT SENTENCE phrase is not allowed in formats that require an
imperative statement. It is only permitted in IF and SEARCH statements. In CBL the NEXT
SENTENCE phrase is allowed anywhere an imperative statement is allowed. You can use the
CONTINUE statement in those places where COBOL85 disallows the NEXT SENTENCE
phrase.

Conditional and Imperative Statements
It is a Prime extension in CBL that conditional statements may appear where imperative
statements are required. In COBOL85 this substitution is not allowed. You can convert an ^-.^
illegal conditional statement to an imperative statement by adding the appropriate explicit
scope delimiter to the conditional statement.
For example, the following valid CBL code

READ filename
INVALID KEY

IF file-status = '23'
PERFORM get-name

ELSE
PERFORM error-routine.

can be converted to valid COBOL85 code by adding the END-IF scope delimiter as shown
below:

H-12 First Edition

Conversion From CBL to COBOL85

READ filename
INVALID KEY

IF file-status = '23'
PERFORM get-name

ELSE
PERFORM error-routine

END-IF.

Record Size Conflict Tables
The following tables list record size conflict differences between CBL and COBOL85. The
tables arc organized as follows:

• PRIMOS Sequential Files (Table H-l)
• Magtape Sequential Files (Table H-2)
• MIDASPLUS Indexed/Relative Files (Table H-3)
• PRISAM Indexcd/Relative/Sequential Files (Table H-4)

Notes pertaining to all of the tables follow Table H-4.

r

r
First Edition H-13

COBOL85 Reference Guide

TABLE H-1
PRIMOS Sequential Files* Record Size Conflicts

Filetype Program
Size

Actual
Size

Verb CBL COBOL85

Uncompressed
Fixed-length

50 50 ALL 00 00

100
100
100

50
50
50

OPEN
READ
WRITE

00
OO3
OO3

39

50
50
50

100
100
100

OPEN
READ
WRITE

00
OO3
OO3

39

102
102
102

50
50
50

OPEN
READ
WRITE

00
OO3
OO3

OO4
OO3
OO3

99
99
99

100
100
100

OPEN
READ
WRITE

00
00
00

001
00
00

Variable-length5 so-
so...
50...

100
100
100

50
10

120

READ
READ
READ

(X)
00
95

00
04
042

50...
50...
50...

100
100
100

50
10

120

WRITE
WRITE
WRITE

00
00
95

00
445
44s

H-14 First Edition

Conversion From CBL to COBOL85

TABLE H-2
Magtape Sequential Files* Record Size Conflicts

Filetype Program
Size

Actual Size Verb CBL COBOL85

Labeled fixed-
length input files

50
50

50
50

OPEN
READ

00
00

00
00

50
50

100
100

OPEN
READ

00
OO3

39

100
100

50
50

OPEN
READ

00
OO3

39

Unlabeled
fixed-length

— no checking for unlabeled tapes —

Labeled variable-
length

50...100
50...100

50...100
50... 100

OPEN
READ

00
00

00
CX)

50...120
50...120

50...100
50... 100

OPEN
READ

00
OO3

39

30...100
30...100

50...100
50...100

OPEN
READ

00
00

00
(X)

60...100
60...100

50...100
50...100

OPEN
READ< 60

00
00

(X)
04

50...80
50...80

50...100
50...100

OPEN
READ> 80

00
00

OO7
042

Unlabeled variable-
length

60...100
60...100

50...100
50...100

OPEN
READ< 60

00
00

00
04

50...80
50...80

50...100
50...100

OPEN
READ> 80

00
00

00
042

-

r First Edition H-15

COBOL85 Reference Guide

TABLE H-3
MIDASPLUS Indexed/Relative Files'* Record Size Conflicts

Filetype Program CREATK Verb CBL COBOL85
Size Size

Fixed-length 50 50 ALL 00 00

100 50 OPEN 00 39
100 50 READ 00
100 50 WRITE OO2

50 100 OPEN abort 39

Filetype Program MIDAS+ Verb CBL COBOL85
Size Stored

Actual
MinlMax

Variable-length 50.. .100 OPEN 00 39
(indexed only) READ>

WRITE
100 abort

00

50.. .100 50..TOO ALL 00 00

so-.150 50.. .100 OPEN 00 39
so- .150 50.. .100 READ 00 .—
so...150 50.. .100 WRITE 00

10.. .100 50.. .100 OPEN 00 39
10.. .100 50.. .100 READ 00
10.. .100 50.. .100 WRITE 00

70.. .80 50.. .100 OPEN 00 OO7
70.. .80 50.. .100 READ> 80 abort 042
70.. .80 so-.100 READ< 70 00 04
70.. .80 so...100 WRITE 70...80 00 00
70.. .80 50.. .100 WRITE:>80 00 446

H-16 First Edition

Conversion From CBL to COBOL85

TABLE H-4
PRISAM Indexed/Relative/Sequential Files Record Size Conflicts

r

Filetype Program
Size

DDL Size Verb CBL COBOL85

Fixed-length 50 50 ALL 00 00

100
100
100

50
50
50

OPEN
READ
WRITE

00
00
95

39

50
50
50

100
100
100

OPEN
READ
WRITE

00
95
00

39

Variable-length
(DDL contains
OCCURS
DEPENDING ON
clause)

50...100

50...150
50..:150
50...150

50... 100

50... 100
50... 100
50...100

ALL

OPEN
READ
WRITE > 100

00

00
00
95

00

39

10...100
10...100
10...100

50...100
50...100
50... 100

OPEN
READ
WRITE

00
00
00

39

70...80
70...80
70...80
70...80
70...80

50...100
50...10O
50... 100
50... 100
50... 100

OPEN
READ > 80
READ < 70
WRITE 70...80
WRITE > 80

00
95
00
00
00

OO7
042
04
00
446

Pseudo-variable-
length (DDL con
tains multiple 01
levels)

50...70 50,70 ALL 00 00

— Program maximum larger than DDL maximum •...

40...80
40...80
40...80
40...80

40,70
40,70
40,70
40,70

OPEN
READ 40
READ 70
WRITE A=40,70

00
00
00
95

39

— Program minimum smaller than DDL minimum

20...70
20...70
20...70
20...70

40,70
40,70
40,70
40,70

OPEN
READ 40
READ 70
WRITE A=40,70

00
00
00
95

39

r First Edition H-17

_ _ _ _ ^ \
COBOL85 Reference Guide

TABLE H-4
PRISAM Indexed/Relative/Sequential Files Record Size Conflicts - Continued

F i l e t y p e P r o g r a m D D L S i z e V e r b C B L C O B O L 8 5
Size

— Program maximum smaller than DDL maximum —

40. ..60 40, 70 OPEN 00 OO7
40. ,.60 40,70 READ 40 00 00
40. ..60 40,70 READ 70 95 042
40. ..60 40,70 WRITE A=40,70 95 44

— Program minimum larger than DDL minimum —

50...70 40,70 OPEN 00 007
50...70 40,70 READ 40 00 04
50...70 40,70 READ 70 00 00
50...70 40,70 WRITE A=40,70 95 44

Notes

1. Size comparisons are based on word size.
2. Truncation occurs.
3. Undefined results.
4. There is no way to determine the actual size of a PRIMOS fixed-length record. The

program record size is used to read a record. If the subsequent word is a newline
character, the OPEN is successful. Therefore, when multiples of actual record lengths
(plus newline words) equal the program record size, a file attribute conflict is not
detected. Subsequent file operations are undefined.

5. There are no minimum or maximum size attributes associated with PRIMOS variable-
length files to be checked during an OPEN. Sizes are checked during READ only.
WRITE statements are subject only to the following note.

6. If a program's record description for a variable-length file contains a DEPENDING ON
phrase, and the maximum is out of range so that the size of the record being written is
larger than the valid maximum for the file, the program is invalid and status code 44
applies.

7. This OPEN statement is permitted only if the RECORD IS VARYING clause is
specified with a minimum and a maximum that are equal to the actual file minimum
and maximum.

Other Notes Related to Size Conflict CBUCOBOL85 Differences

1. The size of a rewritten variable-length record must equal the size of the record being
replaced. This rule applies to all filetypes in both CBL and COBOL85. However, CBL
returns status code 95; COBOL85 returns status code 44.

H-18 First Edition

Conversion From CBL to COBOL85

2. In CBL status code 95 is treated as an INVALID KEY error for keyed access. The
imperative statement after INVALID KEY is executed if you specify one. Otherwise,
any applicable USE procedure is executed. In either case, control returns to the
statement following the 1-0 statement that detected status code 95. If neither an
INVALID KEY clause nor declaratives are specified, the program terminates.

3. In COBOL85 status code 44 is a fatal logic error. After executing any applicable USE
procedure, the program terminates.

4. In COBOL85 status code 04 is an informational error. The 1-0 operation is successful.

"

r
First Edition H-19

Impi em en ta tion-depen den t
Features of COBOL85

'

Maximum Sizes

r

Unpacked decimal (DISPLAY) number 18 digits
Packed decimal number 18 digits

(COMP-3 and PACKED-DECIMAL)
Binary number 18 digits, default S9999

(COMP and BINARY)
Floating-point-1 (COMP-1) value 10E38, minimum 10E-38

mantissa 7 digits
Floating-point-2 (COMP-2) value 10E+9823, minimum 10E-9902

mantissa 14 digits
Index value (max occurrence number) 128K(131,071)
Index size 64 bits
WORKING-STORAGE size 100 128K-byte segments
Program size (PROCEDURE DIVISION) 100 128K-byte segments
Internal tabic (array) size 100 128K-byte segments
External table (array) size Unlimited by COBOL85
Length of data-names and other 32 characters

programmer-defined words
Filename as literal, 128 characters

including pathname
program-id 8 characters through SEG;

32 characters through BIND
Size of an elementary item 32K bytes
Record sizes:

In WORKING-STORAGE 100 128K-byte segments
PRIMOS sequential disk file 64K bytes
PRISAM file 32K bytes
MIDASPLUS file 32K bytes
Tape file (fixed-length) 12K bytes (blocking factor of 1)
Tape file (variable-length) 9995 bytes

First Edition 1-1

COBOL85 Reference Guide

Block sizes:
Disk (all file types)
Tape

64K bytes
12K bytes

Maximum Numbers

Characters in ACCEPT or DISPLAY
Delimiters of UNSTRING
Number of subscripts (array dimensions)
Number of secondary keys
Number of files open at once

Number of files merged
Number of files sorted
Number of qualifiers:

for paragraph-names
for data-names or condition-names

Operands of PROCEDURE DIVISION USING

256
5
8
17
128 (0 and 127 are reserved for

PRIMOS)
2-11
1-20

1
50

64

Other Information

High values
Low values

HexFF
Hex 00

1-2 First Edition

COBOL85 Library Files

Note

COBOL85 programs do not have access to any part of the CBL library. Likewise, CBL
programs do not have access to any part of the COBOL85 library. All CBL and COBOL85
entry points are unique.

To use COBOL85, you must have the following files available in the directories specified:

r Directory Filename

CMDNCO COBOL85.RUN
SYSOVL COBOL85DATA
LIB COBOL85LIB

NCOBOL85LIB
LIBRARIES* COBOL85 LIBRARY.RUN

Function

EPF COBOL85 compiler
Diagnostic file
COBOL85 library
Nonshared COBOL85 library routines
EPF COBOL85 library routines

The COBOL85 library (COBOL85LIB orNCOBOL85LIB) contains the foUowing subroutines:

Subroutine Function

r
r

CB$ACLT
CB$ADAT
CB$ADAY
CB$ADDFCB
CB$ALC
CB$ANY2/CB$ANY3

CB$ART
CB$ATIM

CB$ATOA
CB$BRD
CB$CA
CB$CLL

Alphabetic class tests
Returns current date in format YYMMDD
Returns Julian date in format YYDDD
Adds FCB to active list
Merge internal routine
Runtime interface between object program and system
conversion
Merge internal routine
Returns current time in format IIHMMSSFF:

H = Hour
M = Minutes
S = Seconds
F = Hundredths of seconds

Performs compile/object time data conversion
Merge internal routine
Closes all open files
Merge internal routine

First Edition d-1

COBOL85 Reference Guide

Subroutine
CB$CLOSE
CB$CLU
CB$CM
CB$CMB
CB$CMP
CB$CPR
CB$CRLSE
CB$CSMOP
CB$CVRT
CBDI/CBDR
CB$DR
CB$EM
CB$EMT
CB$ERR
CB$EXP
CB$EXP
CB$EZCM
CB$FLL
CB$FLU
CB$GETFID
CB$IBL
CB$ICA
CBIN/CBIN1
CB$INS
CB$INSP
CB$KGT
CB$LNK
CB$LNL
CB$MER
CB$MG1
CB$MG2
CB$MG3
CB$MLT
CB$MOV
CB$MSU
CB$NCLT
CB$NED
CB$OBL
CB$OM
CB$OPEN
CB$OUT
CB$PER
CB$PRC
CB$PRTN
CB$RCK
CB$RDR
CBRI/CBRR
CB$RLS
CB$RM
CB$RMVFCB
CB$RS
CB$RTN
CB$SHL

Function
Closes a file
Merge internal routine
Closes magnetic tape file
Merge internal routine
Merge internal routine
Merge internal routine
Sort/merge release interlude
Sort/merge open interlude
Miscellaneous conversion routine
Deletes record from an indexed/relative file
Deletes record from an indexed/relative file
Magnetic tape error processing
Merge internal routine
Error processing
Merge internal rouune
Runtime decimal exponentiation
EBCDIC compare
Merge internal routine
Merge internal routine
Gets pathname for file
Merge internal routine
Merge internal routine
File assignment initialization
Merge internal routine
INSPECT statement processor
Merge internal routine
Merge internal routine
Merge internal routine
Maps MIDASPLUS error codes to file status
Initiates the merge process
Merge internal routine
Closes all units opened by other merge routines
Merge internal routine
Merge internal routine
Initialize the merge process
Numeric class test
Miscellaneous numeric editing
Merge internal routine
Opens magnetic tape file
Opens a file
Merge internal rouune
Maps PRISAM error codes to file status
Merge internal routine
Used with an EXIT PROGRAM to return to caller
Range checking
Merge internal routine
Reads indexed/relative file
Merge internal routine
Reads input from a magnetic tape file
Removes FCB from active list
Reads sequential file
Returns the next merged record
Merge internal rouune

J-2 First Edition

COBOL85 Library Files

Subroutine
CBSI/CBSR
CB$SLR
CB$SMUT
CB$SPC
CB$SRT
CB$STR
CB$STR1/CB$STR2/CB$STR3
CBSW/CBSWO
CB$TIN
CB$TOUT
CB$TRN
CB$UCLT
CB$UN
CB$UNS
CB$UNS1/CB$UNS2
CBWI/CBWR
CB$WM
CB$WR
CB$WS
CB$WTR
CB$XBTD
CB$XDTB
CBXI/CBXR
CB$XMV
CB$XR
CB$XS
CB$XTR
CB$ZCM
CB$ZED
CB$ZMVD
N$ATOA

Function
Starts indexed/relative file
Merge select read interlude
Sort/merge utility routines
Merge internal routine
Merge internal routine
String statement processor
STRING statement
Sense switches setting
Reads input from terminal
Writes output to user terminal
Merge internal routine
User-defined class test
Unlocks an indexed/relative entry
Unstring statement processor
UNSTRING statement
Writes indexed/relative file
Writes output to a magnetic tape file
Writes indexed/relative file
Writes a sequential file
Merge internal routine
Binary to decimal conversion routine
Decimal to binary conversion routine
Rewrites indexed/relative file
Numeric move statement
Rewrites indexed/relative file
Rewrites a sequential file
Merge internal routine
Multi-segment character comparison
Alphanumeric edited move
Multi-segment block move
Interfaces to symbolic debugger

r

r
r First Edition J-3

The MAP Option

The sample program listing in this appendix includes a map created with the -MAP compiler
option. The listing includes the names of all data items, the program name, section and
paragraph headings, with the following information:

LEVEL

SIZE
LOC

ATTRIBUTES

The level number specified by the user in the data-description-entry:

1-49, 66, 77, 88 represent data-names in the
DATA DIVISION

FD represents file-description-entries

The size in 16-bit halfwords, unless followed by C, indicating characters.
The memory address in octal notation, unless the -HEXADDRESS option is
used. The address may be followed by a number and a letter. If there is no
number, the data is allocated in the link frame. Otherwise, the data is in a
common block of that number. The common block names are at the end of
the map.
The first line shows whether the data-name is COMP-1, COMP-2, COMP-3,
PACKED-DECIMAL, INDEX, DISPLAY, FD-FILE, ALPHANUMERIC,
ALPHANUMERIC GROUP ITEM, BINARY, or US-BINARY. The US
means unsigned. The BINARY attribute corresponds to COBOL85 data types
in the following way:

BINARY-1 16-bit COMP, PIC 9 through PIC 9(4)

BINARY-2 32-bit COMP, PIC 9(5) through PIC 9(9)

BINARY-4 64-bit COMP, PIC 9(10) through PIC 9(18)

For DISPLAY items, the listing shows whether they have a separate sign or
an overpunch. The listing also indicates group items.
The second line shows the line where the item is declared. An asterisk indi
cates a line where the value of the item is changed.

r First Edition K-1

COBOL85 Reference Guide

For items from a copy file, the line number is shown in the format

n<m>

where n is the line of the COPY statement in the main program, and m is the line number in
the copy file.
In addition, at the end of the listing, the amount of 16-bit halfwords of working storage is
given. Working storage is divided into

• LINK BASE — the link frame space.
• The names of common blocks used. These names, created by the compiler, end with a

number plus a dollar sign to avoid possible use in a program.

The program below uses two common blocks, QWTB1$ and QWTB2$, created by the
compiler with a hashing formula based on the program-id.

Example
SOURCE FILE: <MYMFD>MYDIR>MAP.COBOL85
COMPILED ON: WED, MAR 16 1988 AT: 10:04 BY: COBOL85 REV. 1.0-22.0 02/01/88.14:1!
Options selected: map -map
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default) :

64V No_Ansi_Obsolete Binary CALCindex No_COMP No_CORrMap No_DeBuG
No_ERRorFile ERRTty No_EXPlist No_File_Assign Formatted_DISplay
No_HEXaddress Listing* MAp* No_OFFset OPTimize(2) No_PRODuction No_RAnge
No_SIGnalerrors Silent(0) No_SLACKbytes TIME No_STANdard No_STATistics
Store_Owner_Field SYNtaxmsg No_TRUNCdlags UPcase VARYing No_XRef

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2 8
2 9

IDENTIFICATION DIVISION.
PROGRAM-ID. REL2HUGE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT A-FILE ASSIGN TO MT9
ORGANIZATION IS SEQUENTIAL.

SELECT B-FILE ASSIGN TO PRIMOS
ORGANIZATION IS SEQUENTIAL.
SELECT C-FILE ASSIGN TO PRIMOS
ORGANIZATION IS SEQUENTIAL.
SELECT D-FILE ASSIGN TO PRIMOS
ORGANIZATION IS SEQUENTIAL.
SELECT T-FILE ASSIGN TO MIDASPLUS

ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC

RECORD KEY IS T-KEY0
ALTERNATE RECORD KEY IS T-KEY1
ALTERNATE RECORD KEY IS T-KEY2
ALTERNATE RECORD KEY IS T-KEY3
FILE STATUS IS T-FILE-STATUS.

SELECT MIDAS-S-FILE ASSIGN TO MIDASPLUS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS S-KEY0
ALTERNATE RECORD KEY IS S-KEY1 WITH DUPLICATES

K-2 First Edition

30
31
32
33
34
35
36
37
38
39
41
42
43
44
45
47
48
49
50
51
53
54
55
56
57
59
60
61
62
63
65
66
67
63
69
70
71
72
73
75
76
77
78
79
80
81
82
83
84
85
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104

The MAP Option

ALTERNATE RECORD KEY IS S-KEY2 WITH DUPLICATES
FILE STATUS IS FILE-STATUS.

SELECT REL-1 ASSIGN TO MIDASPLUS
ORGANIZATION RELATIVE
ACCESS RANDOM
RELATIVE KEY REL-KEY
FILE STATUS REL-1-STATUS.

DATA DIVISION.
FILE SECTION.
FD A-FILE

VALUE OF FILE-ID IS 'YIKES'.
01 A-REC.

03 ATAB OCCURS 1000.
0 5 A - E N T P I C X (3 2) .

FD B-FILE
VALUE OF FILE-ID IS 'B-FILE'.

01 B-REC.
03 ATAB OCCURS 100.

0 5 A - E N T P I C X (3 1 4) .
FD C-FILE

VALUE OF FILE-ID IS 'C-FILE'.
01 C-REC.

03 ATAB OCCURS 1000.
0 5 A - E N T P I C X (3 2) .

FD D-FILE
VALUE OF FILE-ID IS 'D-FILE'.

01 D-REC.
03 ATA3 OCCURS 1000.

05 A-ENT PIC X(32).
FD T-FILE

VALUE OF FILE-ID IS 'TF-FILE1'.
01 TREC.

03 T-KEY0 PIC 9(4).
03 FILLER PIC X.
03 T-KEY1 PIC 9(4).
03 T-KEY2 PIC 9(6).
03 T-KEY3 PIC 9(2).
03 T-DATA PIC X(33).

FD MIDAS-S-FILE
VALUE OF FILE-ID IS SHORTREC-TREE.

01 SHORT-REC.
03 S-KEY0 PIC 9(5).
03 S-KEY1.

05 S-KEY-1-X PIC X.
05 S-KEY1-9 PIC 9(6).

03 S-KEY2.
05 S-KEY2-X PIC X.
05 K-KEY2-9 PIC 9(4).

03 S-DATA PIC X(33) .
FD REL-1 UNCOMPRESSED

VALUE OF FILE-ID
01 RECORD-1.

IS REL-1-TREE.

02 PRIM-KEY
02 ALT-KEY1
02 ALT-KEY2
02 FILLER

PIC 9(16)
PIC 9(16)
PIC 9(16)
PIC X(12)

WORKING-STORAGE SECTION.
01 SHORTREC-TREE
01 RTREE.

03 FILLER
03 REL-1-TREE

01 REL-STATUS-STUFF.
03 FILLER
03 REL-1-STATUS
03 T-FILE-STATUS
03 FILE-STATUS

01 REL-KEY-STUFF.
03 FILLER

PIC X(40) VALUE 'SHORTREC

PIC X.
PIC X(40)

PIC X.
PIC X(2).
PIC X(2).
PIC X(2).

PIC X.

VALUE 'REL-1*

First Edition K-3

COBOL85 Reference Guide

105
106
107
108
109
110
H I
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

PIC 9(6).
PIC X(4) .
PIC X(4).
PIC X(4).
PIC X(4) .
PIC S999 COMP VALUE 100.

03 REL-KEY
01 CPU-START
01 CPU-FIN
01 DISK-START
01 DISK-FIN
01 LOOP-COUNT
PROCEDURE DIVISION.
DECLARATIVES.
DECLARE-1-SECTION SECTION.

USE AFTER ERROR PROCEDURE ON REL-1.
DECLARE-1-P1.

DISPLAY 'IO ERROR ON REL-1'.
DISPLAY 'STATUS = ' REL-1-STATUS.
DISPLAY 'REL-KEY = ' REL-KEY.
CLOSE REL-1.
GO TO ALL-DONE.

END DECLARATIVES.
START-SECTION SECTION.
P I .

DISPLAY 'ENTER RELATIVE FILE PATHNAME
ACCEPT REL-1-TREE.
DISPLAY 'ENTER ISAM FILE NAME'.
ACCEPT SHORTREC-TREE.
OPEN INPUT REL-1.
MOVE 0 TO PRIM-KEY.
MOVE 0 TO REL-KEY.
MOVE 0 TO ALT-KEY1.
MOVE 0 TO ALT-KEY2.
DISPLAY 'READ RELATIVE FILE TEST'.
PERFORM READ-1 LOOP-COUNT TIMES.
GO TO CLOSE-FILES.

READ-1.
DISPLAY 'ENTER KEY AS 9(6) ITEM'.
ACCEPT REL-KEY.
READ REL-1 RECORD.
DISPLAY RECORD-1.

CLOSE-FILES.
CLOSE REL-1.

ALL-DONE.
EXIT.

A100-MAIN.
DISPLAY
DISPLAY

(USING BYTE-ALIGNED KEY)READ ISAM FILE TEST.
ENTER Q$ TO QUIT'.

OPEN 1-0 MIDAS-S-FILE.
A100-KEEP-GOING.

DISPLAY 'ENTER KEY AS X(7) ITEM'.
ACCEPT S-KEY1.
IF S-KEY1 = 'Q$' THEN GO TO A999-END.
READ MIDAS-S-FILE KEY IS S-KEY1

INVALID KEY
DISPLAY FILE-STATUS.

EXHIBIT SHORT-REC.
GO TO A100-KEEP-GOING.

A999-END.
CLOSE MIDAS-S-FILE.
DISPLAY FILE-STATUS.

A200-MAIN.
DISPLAY 'READ ISAM FILE TEST (WORD ALIGNED KEY)'.
DISPLAY 'ENTER QS TO QUIT'.
OPEN 1-0 MIDAS-S-FILE.

A200-KEEP-GOING.
DISPLAY 'ENTER KEY AS X(5) ITEM'.
ACCEPT S-KEY2.
IF S-KEY2 o 'Q$' THEN GO TO A9999-END.
READ MIDAS-S-FILE KEY IS S-KEY2

INVALID KEY
DISPLAY FILE-STATUS.

EXHIBIT SHORT-REC.

K-4 First Edition

The MAP Option

'

r

-

173
174
175
176
177

GO TO A200-KEEP-GOING,
A9999-END.

CLOSE MIDAS-S-FILE.
DISPLAY FILE-STATUS.
STOP RUN.

DATA NAMES DECLARED IN REL2HUGE

REL2HUGE

NAME LEVEL SIZE LOC (0

A-FILE FD 135 001405

B-FILE FD 161 100214

C-FILE FD 161 100455

D-FILE FD 161 100716

T-FILE FD 213 101157

MIDAS-S-FILE FD 191 101661

REL-1 FD 152 102336

A-REC 32000C 001614

ATAB

A-ENT

B-REC

ATAB

A-ENT

C-REC

ATAB

A-ENT

D-REC

ATAB

3 32000C 001614

5 3 2 C 0 0 1 6 1 4

1 31400C 000000

3 31400C Cl+000432

5 3 1 4 C C l + 0 0 0 4 3 2

1 32000C 075250

3 32000C Cl+000432

5 3 2 C C l + 0 0 0 4 3 2

1 32000C 000000

3 32000C C2+000434

A-ENT 32C C2+000434

TREC SOC 101504

T-KEY0 4C 101504

FILLER IC 101506

T-KEY1 4C 101506+1C

ENTRY PT EXTERNAL
DECLARED ON LINE 2

ATTRIBUTES

FD-FILE
DECLARED ON LINE 9
FD-FILE
DECLARED ON LINE 11
FD-FILE
DECLARED ON LINE 13
FD-FILE
DECLARED ON LINE 15
FD-FILE
DECLARED ON LINE 17
FD-FILE
DECLARED ON LINE 25
FD-FILE
DECLARED ON LINE 32
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 4 2
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 4 3
ALPHANUMERIC
DECLARED ON LINE 4 4
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 4 8
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 4 9
ALPHANUMERIC
DECLARED ON LINE 50
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 5 4
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 55
ALPHANUMERIC
DECLARED ON LINE 56
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 60
ALPHANUMERIC GROUP ITEM
OCCURRING ITEM
DECLARED ON LINE 61
ALPHANUMERIC
DECLARED ON LINE 62
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 66
US-DISPLAY(4,0)
DECLARED ON LINE 67
ALPHANUMERIC
DECLARED ON LINE 68
US-DISPLAY(4,0)
DECLARED ON LINE 69

First Edition K-5

COBOL85 Reference Guide

T-KEY2 6C 101510+1C

T-KEY3 2C 101513+1C

T-DATA 33C 101514+1C

SHORT-REC 50C 102160

S-KEYO 5C 102160

S-KEY1 7C 102162+1C

S-KEY-1-X IC 102162+1C

S-KEY1-9 6C 102163

S-KEY2 5C 102166

S-KEY2-X IC 102166

K-KEY2-9 AC 102166+1C

S-DATA 33C 102170+1C

RECORD-1 60C 102566

PRIM-KEY 16C 102566

ALT-KEY1 16C 102576

ALT-KEY2 16C 102606

FILLER 12C 102616

SHORTREC-TREE 4 0C 102771

RTREE 41C 103015

FILLER IC 103015

REL-1-TREE 4 0C 103015+1C

REL-STATUS-STUFF
1 7C 103042

FILLER IC 103042

REL-1-STATUS 2C 103042+1C

T-FILE-STATUS 2C 103043+1C

FILE-STATUS 2C 103044+1C

REL-KEY-STUFF 7C 103046

FILLER IC 103046

REL-KEY 6C 103046+1C

CPU-START 4C 103052

CPU-FIN 4C 103054

DISK-START 4C 103056

DISK-F IN 4C 103060

LOOP-COUNT 103062

US-DISPLAY(6,0)
DECLARED ON LINE 70
US-DISPLAY(2,0)
DECLARED ON LINE 71
ALPHANUMERIC
DECLARED ON LINE 72
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 76
US-DISPLAY(5,0)
DECLARED ON LINE 77
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 78
ALPHANUMERIC
DECLARED ON LINE 79
US-DISPLAY(6,0)
DECLARED ON LINE 80
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 81
ALPHANUMERIC
DECLARED ON LINE 82
US-DISPLAY(4,0)
DECLARED ON LINE 83
ALPHANUMERIC
DECLARED ON LINE 84
ALPHANUMERIC GROUP ITEM
REDEFINING ITEM
DECLARED ON LINE 88
US-DISPLAY(16,0)
DECLARED ON LINE 89
US-DISPLAY(16,0)
DECLARED ON LINE 90
US-DISPLAY(16,0)
DECLARED ON LINE 91
ALPHANUMERIC
DECLARED ON LINE 92
ALPHANUMERIC
DECLARED ON LINE 94
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 95
ALPHANUMERIC
DECLARED ON LINE 96
ALPHANUMERIC
DECLARED ON LINE 97

ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 98
ALPHANUMERIC
DECLARED ON LINE 99
ALPHANUMERIC
DECLARED ON LINE 100
ALPHANUMERIC
DECLARED ON LINE 101
ALPHANUMERIC
DECLARED ON LINE 102
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 103
ALPHANUMERIC
DECLARED ON LINE 104
US-DISPLAY(6,0)
DECLARED ON LINE 105
ALPHANUMERIC
DECLARED ON LINE 106
ALPHANUMERIC
DECLARED ON LINE 107
ALPHANUMERIC
DECLARED ON LINE 108
ALPHANUMERIC
DECLARED ON LINE 109
B INARY-1 (10 ,0)

" >

'

1

K-6 First Edition

PROCEDURE NAMES DEFINED IN REL2HUGE

NAME

DECLARE-1-SECTION

DECLARE-1-P1

START-SECTION

PI

READ-1

CLOSE-FILES

ALL-DONE

A100-MAIN

A100-KEEP-GOING

A999-END

A200-MAIN

A200-KEEP-GOING

A9999-END

PROGRAMS CALLED FROM REL2HUGE

(NONE)

The MAP Option

DECLARED ON LINE 110

ATTRIBUTES

SECTION END OF PERFORM RANGE
DECLARED ON LINE 113
PARAGRAPH
DECLARED ON LINE 115
SECTION
DECLARED ON LINE 122
PARAGRAPH
DECLARED ON LINE 123
PARAGRAPH END OF PERFORM RANGE
DECLARED ON LINE 136
PARAGRAPH
DECLARED ON LINE 141
PARAGRAPH
DECLARED ON LINE 143
PARAGRAPH
DECLARED ON LINE 145
PARAGRAPH
DECLARED ON LINE 149
PARAGRAPH
DECLARED ON LINE 158
PARAGRAPH
DECLARED ON LINE 161
PARAGRAPH
DECLARED ON LINE 165
PARAGRAPH
DECLARED ON LINE 174

COMMON (EXTERNAL) AREAS

QWTB1S 63400 HALFWORDS IN AREA

QWTB2S 32000 HALFWORDS IN AREA

r First Edition K-7

The XREF Option

'

'

r

This appendix contains a sample program followed by a cross-reference listing created with
the -XREFSORT compiler option. The program includes two COPY statements, one in the
WORKING-STORAGE SECTION, and one in the PROCEDURE DIVISION.
The cross-reference listing includes all features provided by the -MAP option. In addition, it
provides a list of all lines on which each data item is referenced, including destructive
references. -XREF lists the names in the map in source program order. -XREFSORT lists
the names in alphabetic order. The cross-reference listing gives each data-name, and the
following information:

LEVEL The level-number specified by the user in the data-description-entry.
SIZE The size in 16-bit halfwords, unless followed by C, indicating characters.
LOC The memory address in octal notation, unless the -HEXADDRESS option is

used. This address may be followed by a two-character code. If there is no
code, the data is allocated in the link frame. Any other code is the number of
the common block at the end of the listing.

ATTRIBUTES The first line shows whether the data-name is COMP-1, COMP-2, COMP-3,
PACKED-DECIMAL, INDEX, DISPLAY, FD-FILE, ALPHANUMERIC,
ALPHANUMERIC GROUP ITEM, BINARY, or US-BINARY The US
means unsigned. The BINARY attribute corresponds to COBOL85 data types
in the following way:

BINARY-1 16-bit COMP, PIC 9 through PIC 9(4)

BINARY-2 32-bit COMP, PIC 9(5) through PIC 9(9))

BINARY-4 64-bit COMP, PIC 9(10) through PIC 9(18)

For DISPLAY items, the listing shows whether they have a separate sign or
an overpunch. The listing also indicates group items, and shows the precision
of the data items.
The second line shows the line on which the item is declared, and all lines
that contain references to the item. Line numbers prefixed with an asterisk
indicate destructive references.

First Edition L-1

COBOL85 Reference Guide

For items from a copy file, the line number is shown in the format

n<m>

where n is the line of the COPY statement in the main program, and m is the line number in
the copy file.

Example

L-2 First Edition

SOURCE FILE: <MYMFD>MYDIR>XREF.COBOL85
COMPILED ON: WED, MAR 16 1988 AT: 10:26 BY: COBOL85 REV. 1.0-22.0 02/01/88.14:18
Options selected: xref -xrefsort
Optimization note: Currently "-OPTimize" means "-OPTimize 2",
Options used (* follows those that are not default) :

64V No_Ansi_Obsolete Binary CALCindex No_COMP No_CORrMap No_DeBuG
No_ERRorFile ERRTty No_EXPlist No_File_Assign Formatted_DISplay
No_HEXaddress Listing* MAp* MAPSort* No_OFFset OPTimize(2) No_PRODuction
No_RAnge No_SIGnalerrors Silent(0) No_SLACKbytes TIME No_STANdard
No_STATistics Store_Owner_Field SYNtaxmsg No_TRUNCdiags UPcase VARYing
XRef* XRefSort*

1
2
3
4
5
6
7
8
9

10
1>
2>
3>
4>
5>
6>
7>
8>
9>

10>
11>
12>
13>
14>
15>
16>
17>
18>
19>
20>

11
12
13
14
15
16
17
18
19
20
21
22

IDENTIFICATION DIVISION.
PROGRAM-ID. XREF3.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME.
OBJECT-COMPUTER. PRIME.

******************* ! I *

DATA DIVISION.
COPY 'XREF3.LIB' .

WORKING-STORAGE SECTION.
01 LEADING-SEP
01 TRAILING-SEP
01 FIXED-DEC
01 LEADING-OVP
01 TRAILING-OVP
01 US-DISPLAY
01 INDEX-NAME
01 INDEX-ITEM
01 LS

01 TS

01 C3

01 LOP

PIC S99 COMP VALUE 51.
PIC S99 COMP VALUE 52.
PIC S99 COMP VALUE 4.
PIC S99 COMP VALUE 54.
PIC S99 COMP VALUE 55.
PIC S99 COMP VALUE 63.
PIC S99 COMP VALUE 67.
PIC S99 COMP VALUE 67.
PIC S9(7)V9(2) LEADING SEPARATE

VALUE -1234567.89.
PIC S9(7)V9(2) TRAILING SEPARATE

VALUE +9876543.21.
PIC S9(7)V9(2) COMP-3

VALUE +0.

")

01 TROP

01 USD

01

PIC S9(7)V9(2) LEADING
VALUE -7654321.98.

PIC S9(7)V9(2) TRAILING
VALUE +23.45.

PIC 9(7)V9(2)
VALUE 5544773.32.

IND-DATA-ITEM USAGE IS INDEX.
01 TAB.

05 T-ELEMENT PIC 99 COMP OCCURS 10 INDEXED BY
INDX.

PIC S99 COMP VALUE 32765.
PIC S99999 COMP VALUE 1234567.

PIC S99999999999 COMP VALUE 12345678901.
PIC 99 COMP VALUE 3000.

PIC 999999 COMP VALUE 22334 4.
PIC 999999999999999 COMP

01 FBI
01 FB2
01 FB4
01 USFB1
01 USFB2
01 USFB4

The XREF Option

'

-

2 3 V A L U E 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 .
2 4 0 1 C M P 1 C O M P - 1 V A L U E 2 3 4 5 . 6 7 E + 4 .
2 5 0 1 C M P C O M P - 2 V A L U E - 7 6 4 3 2 1 . 9 8 E + 1 4 .
2 6 0 1 S B P I C S 9 (2) V 9 (2) C O M P V A L U E 7 6 . 5 4 .
2 7 0 1 S B 2 P I C S 9 (3) V 9 (3) C O M P VA L U E 9 8 7 . 6 5 4 .
28 01 SB4 PIC S9(12)V9(4) COMP VALUE -55555444 4433.1234.
2 9 0 1 P P I C S 9 9 C O M P V A L U E Z E R O .
3 0 0 1 Q P I C S 9 9 C O M P V A L U E Z E R O .
3 1 0 1 T Y P I C S 9 9 C O M P V A L U E Z E R O .
3 2 0 1 P V A L U E P I C S 9 C O M P V A L U E 9 .

01 CMP1
01 CMP
01 SB
01 SB2
01 SB4 PIC S9
01
01
01 TY
01 PVALUE
01 QVALUE
01 CVAR.

05 CSIZE
05 CSTRING

01 FAKE1
01 FAKE2
01 FAKE3
01 LSA

33 01 QVALUE P IC S9 COMP VALUE 2 .
34
3 5 0 5 C S I Z E P I C S 9 C O M P VA L U E 0 .
36 05 CSTRING P IC X (30) VALUE SPACES.
3 7 0 1 F A K E 1 P I C S 9 (5) VA L U E 0 0 0 0 0 0 0 1 5 .
3 8 0 1 FA K E 2 P I C S 9 (4) V 9 (2) VA L U E - 0 0 0 0 0 0 1 2 3 4 . 5 6 .
3 9 0 1 FA K E 3 P I C S 9 (4) V 9 (2) VA L U E + 0 0 0 0 0 0 0 1 2 3 4 . 5 6 .
4 0 0 1 L S A P I C S 9 (7) V 9 (2) L E A D I N G S E PA R AT E
4 1 V A L U E - 1 2 3 4 5 6 7 . 8 9 .
4 2 0 1 T S A P I C S 9 (7) V 9 (2) T R A I L I N G S E P A R A T E
4 3 V A L U E + 9 8 7 6 5 4 3 . 2 1 .
4 4 0 1 C 3 A P I C S 9 (7) V 9 (2) C O M P - 3
4 5 V A L U E + 0 .
4 6 *
4 7 0 1 L O P A P I C S 9 (7) V 9 (2) L E A D I N G
4 8 V A L U E - 7 6 5 4 3 2 1 . 9 8 .
4 9 0 1 T R O P A P I C S 9 (7) V 9 (2) T R A I L I N G
5 0 V A L U E + 2 3 . 4 5 .
5 1 0 1 U S D A P I C 9 (7) V 9 (2)
5 2 V A L U E 5 5 4 4 7 7 3 . 3 2 .
5 3 0 1 F B 1 A P I C S 9 9 C O M P VA L U E 3 2 7 6 5 .
5 4 0 1 F B 2 A P I C S 9 9 9 9 9 C O M P VA L U E 1 2 3 5 6 7 .
55 01 FB4A PIC S99999999999 COMP VALUE 12345678901.
56 01 USFB1A PIC 99 COMP VALUE 3000.
57 01 USFB2A PIC 999999 VALUE 223344.
58 01 USFB4A PIC 999999999999999 VALUE 123451234512345.
5 9 0 1 C M P 1 A C O M P - 1 VA L U E 2 3 4 5 . 6 7 E + 4 .
6 0 0 1 C M P 2 A C O M P - 2 VA L U E - 7 6 4 3 2 1 . 9 8 E + 1 4 .
6 1 0 1 S B 1 A P I C S 9 (2) V 9 (2) C O M P VA L U E 7 6 . 5 4 .
6 2 0 1 S B 2 A P I C S 9 (3) V 9 (3) C O M P VA L U E 9 8 7 . 6 5 4 .
63 01 SB4A PIC S9(12)V9(4) COMP VALUE -5555544 4 4 433.1234
g 4 *
6 5 P R O C E D U R E D I V I S I O N .
6 6 S l S E C T I O N .
6 7 P I .
6 8 M O V E L S T O L S A .
6 9 M O V E L S T O T S A .
7 0 C O P Y ' X R E F 2 . L I B ' .

1 > M O V E T S T O C 3 A .
2 > M O V E T S T O L O PA .
3 > M O V E T S T O T R O P.
4 > M O V E T S T O U S D A .
5 > M O V E T S T O F B 1 A .
6 > M O V E T S T O F B 2 A .
7 > M O V E T S T O F B 4 A .
8 > M O V E T S T O U S F B 1 A .
9 > M O V E T S T O U S F B 2 A .

1 0 > M O V E T S TO U S F B 4 A .
11 > M O V E T S TO C M P 1 A .
1 2 > M O V E T S T O S B 1 A .
1 3 > M O V E S B 2 T O S B 2 A .
1 4 > M O V E S B 4 T O S B 4 A .

First Edition L-3

COBOL85 Reference Guide

DATA NAMES DECLARED IN XREF3

NAME LEVEL SIZE LOC (0(

C3 5C 000426

C3A 5C 000604

CMP 000514

CMP1 000512

CMP1A 000654

CMP 2 A 000656

CSIZE 000535

CSTRING 30C 000536

CVAR 32C 000535

FAKE1 5C 000556

FAKE 2 6C 000562

FAKE3 6C 000566

FBI 000472

FB1A 000626

FB2 000474

FB2A 000630

FB4 000476

FB4A 000632

FIXED-DEC 000406

IND-DATA-ITEM 000450

INDEX-ITEM 000413

INDEX-NAME 000412

INDX 000466

LEADING-OVP 000407

LEADING-SEP 000404

LOP 9C 000431

LOPA 9C 000607

LS

LSA

I O C 0 0 0 4 1 4

1 0 C 0 0 0 5 7 1

ATTRIBUTES ("*" = DESTRUCTIVE REF)

COMP-3(9,2)
DECLARED ON LINE 10<14>
COMP-3(9,2)
DECLARED ON LINE 44
REFERENCES: *70<1>
COMP-2(47,0)
DECLARED ON LINE 25
COMP-1(23,0)
DECLARED ON LINE 24
COMP-1(23,0)
DECLARED ON LINE 59
REFERENCES: *70<11>
COMP-2(47,0)
DECLARED ON LINE 60
B INARY-1 (4 ,0)
DECLARED ON LINE 35
ALPHANUMERIC
DECLARED ON LINE 36
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 34
TRAILING OVP(5,0)
DECLARED ON LINE 37
TRAILING OVP(6,2)
DECLARED ON LINE 38
TRAILING OVP(6,2)
DECLARED ON LINE 39
BINARY-1(7, 0)
DECLARED ON LINE 17
B INARY-1 (7 ,0)
DECLARED ON LINE 53
REFERENCES: *70<5>
BINARY-2(17 ,0)
DECLARED ON LINE 18
BINARY-2(17 ,0)
DECLARED ON LINE 54
REFERENCES: *70<6>
BINARY-4(37 ,0)
DECLARED ON LINE 19
BINARY-4 (37,0)
DECLARED ON LINE 55
REFERENCES: *70<7>
BINARY-1(7 ,0)
DECLARED ON LINE 10<4>
INDEX-DATA-NAME
DECLARED ON LINE 13
B INARY-1 (7 ,0)
DECLARED ON LINE 10<9>
BINARY-1 (7 ,0)
DECLARED ON LINE 10<8>
INDEX-NAME
DECLARED ON LINE 16
B INARY-1 (7 ,0)
DECLARED ON LINE 10<5>
BINARY-1 (7 ,0)
DECLARED ON LINE 10<2>
LEADING OVP(9,2)
DECLARED ON LINE 10<17>
LEADING OVP(9,2)
DECLARED ON LINE 47
REFERENCES: *70<2>
LEADING SEP (9,2)
DECLARED ON LINE 10<10>
REFERENCES: 68 69
LEADING SEP(9,2)
DECLARED ON LINE 40

L-4 First Edition

The XREF Option

r

r

r
r

P 1 000530

PVALUE 000533

Q 1 000531

QVALUE 000534

SB 000520

SB1A 000662

SB2 000522

SB2A 000664

SB4 000524

SB4A 000666

T-ELEMENT 10 000454

TAB 10 000454

TRAILING-OVP 000410

TRAILING-SEP 000405

TROP 9C 000436

TROPA 9C 000614

TS IOC 000421

TSA IOC 000576

TY 000532

US-DISPLAY 000411

USD 9C 000443

USDA 9C 000621

U S F B 1 1

U S F B 1 A 1

1 0 0 0 5 0 2

1 0 0 0 6 3 6

USFB2 000504

USFB2A 6C 000640

USFB4 000506

USFB4A 15C 000643

REFERENCES: *68
BINARY-1(7,0)
DECLARED ON LINE 29
BINARY-1(4,0)
DECLARED ON LINE 32
BINARY-1(7,0)
DECLARED ON LINE 30
BINARY-1(4,0)
DECLARED ON LINE 33
BINARY-1(14,7)
DECLARED ON LINE 26
BINARY-1(14,7)
DECLARED ON LINE 61
REFERENCES: *70<12>
BINARY-2(20,10)
DECLARED ON LINE 27
REFERENCES: 70<13>
3INARY-2(20,10)
DECLARED ON LINE 62
REFERENCES: *70<13>
BINARY-4(54,14)
DECLARED ON LINE 28
REFERENCES: 70<14>
BINARY-4(54,14)
DECLARED ON LINE 63
REFERENCES: -70<14>
US-BINARY-1(7,0) OCCURRING ITEM
DECLARED ON LINE 15
ALPHANUMERIC GROUP ITEM
DECLARED ON LINE 14
BINARY-1(7,0)
DECLARED ON LINE 10<6>
BINARY-1(7,0)
DECLARED ON LINE 10<3>
TRAILING OVP(9,2)
DECLARED ON LINE 10<19>
REFERENCES: «70<3>
TRAILING OVP(9,2)
DECLARED ON LINE 49
TRAILING SEP(9,2)
DECLARED ON LINE 10<12>
REFERENCES: 70<1> 70<2> 70<3>
70<4> 70<5> 70<6> 70<7> 70<8>
70<9> 70<10> 70<11> 70<12>
TRAILING SEP(9,2)
DECLARED ON LINE 4 2
REFERENCES: *69
BINARY-1(7,0)
DECLARED ON LINE 31
BINARY-1(7,0)
DECLARED ON LINE 10<7>
US-DISPLAY(9,2)
DECLARED ON LINE 11
US-DISPLAY(9,2)
DECLARED ON LINE 51
REFERENCES: *70<4>
US-BINARY-1(7,0)
DECLARED ON LINE 20
US-BINARY-1(7,0)
DECLARED ON LINE 56
REFERENCES: *70<8>
US-BINARY-2(20,0)
DECLARED ON LINE 21
US-DISPLAY(6,0)
DECLARED ON LINE 57
REFERENCES: «70<9>
US-BINARY-4(50,0)
DECLARED ON LINE 22
US-DISPLAY(15,0)
DECLARED ON LINE 58

First Edition L-5

COBOL85 Reference Guide

XREF3

PROCEDURE NAMES DEFINED IN XREF3

NAME

P I

Sl

PROGRAMS CALLED FROM XREF3

REFERENCES: *70<10>
ENTRY PT EXTERNAL
DECLARED ON LINE 2

ATTRIBUTES ("*" = DESTRUCTIVE REF)

PARAGRAPH
DECLARED ON LINE 67
SECTION
DECLARED ON LINE 66

(NONE)

LINK BASE SIZE: 224 HALFWORDS

L-6 First Edition

Loading and Executing With SEG

-
After a program is compiled as discussed in Chapter 2, it must be loaded into an executable
file before being run or executed. The PRIMOS SEG utility loads and executes COBOL85
programs. The loading steps create a runfile, or executable file consisting of one or more
object programs plus any necessary subroutines and libraries. This runfile, or run unit, can
then be executed at will. This appendix describes normal loading and execution. Loading is
described in more detail in the PRIMOS User's Guide. For extended loading features and a
complete description of all SEG commands, including those for system-level programming,
refer to the SEG and LOAD Reference Guide.

Note
If your COBOL85 program is larger than one segment, you must use BIND to link and execute
it, as described in Chapter 3. If your program is less than one segment, you may use either
BIND or SEG.

'
Loading Programs

Default Loading

r
r

The SEG utility can create a default runfile named program.SEG and load default object
filenames. Use the -LOAD parameter after SEG, providing the object filename ends in .BIN.
Perform the following steps for default loading:

1. Give the command SEG -LOAD. The response is a dollar sign ($), indicating that the
load subprocessor is ready.

2. Use the LOAD command with either the binary filename or the source filename. In the
latter case, SEG looks for a binary file of the same name, followed by .BIN.

3. Use the LOAD command to load the object files of any separately compiled
subroutines (preferably in order of frequency of use).

4. Use the LIBRARY command to load subroutines called from libraries in the following
order:

• The COBOL85 library (COBOL85LIB)

First Edition M-1

COBOL85 Reference Guide

• The sort-merge library, if sort-merge files arc loaded (VSRTLI, or NVSRTLI if a
nonshared library is needed)

• Other Prime libraries, if required (filename)
• The PRIMOS system subroutine library — required (LI with no filename)

At this point, you should receive a LOAD COMPLETE message. If the message is
absent, check whether any required libraries, programs to be called, or subroutines are
missing. If necessary, enter MAP 3 (described in the PRIMOS User's Guide and the
SEG and LOAD Reference Guide) to identify the unresolved references and load them.
If the unresolved references are caused by missing subroutine names, enter QUIT and
restart from Step 1. If some other SEG error message appears, refer to the SEG and
LOAD Reference Guide for the probable cause and correction.

5. Enter QUIT to save the runfile and exit from the utility.
SEG gives the runfile the default name filename.SEG, where filename is the name of
the first object file loaded.

For example, suppose you have a main program called MYPROG.COBOL85 compiled to
produce an object file called MYPROG.BIN. The runfile can be created as follows:

OK, SEG -LOAD
[SEG Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]
$ LO MYPROG
$ LI COBOL85LIB
$ LI
LOAD COMPLETE
$ Q
OK,

The command LO MYPROG loads MYPROG.BIN. The resulting runfile is automatically
named MYPROG.SEG.

The Older Loading Procedure
Loads can also be accomplished by the following procedure:

1. Invoke the SEG loader with the SEG command without options. A pound sign (#) is
the response and prompt symbol.

2. Enter the SEG-level LOAD command to start the load subprocessor and to set up the
runfile with a name selected by you (LO runfilename). A dollar sign appears as the
next prompt symbol.

3. Use the LOAD command to load the object files in the following order:

• The object file of the main program (B_filename)
• The object files of any separately compiled programs or subroutines to be called

(preferably in order of frequency of use)
4. Use the LIBRARY command to load subroutines called from libraries in the same

order as in Step 4 in Default Loading above.
5. Enter QUIT to save the runfile and exit from the utility.

M-2 First Edition

LO MAIN. SEG
$ LO B MAIN
$ LO B SUBR
$ LI COBOL85LIB
$ LI
LOAD COMPLETE
$ Q
OK,

r

r

r
r

Loading and Executing With SEG

As an example of loading, assume that you compiled a main program, MAIN, and a
subroutine in a separate source file, SUBR. Both were compiled using the default object
filenames B_MAIN and B_SUBR. They can be loaded as follows:

OK, SEG Br ings SEG into memory
[SEG Rev. 22.0 Copyright (c) Prime Computer, Inc. 1988]

Invokes the loader and establishes a runfile
Loads the main program
Loads any separately compiled subroutine
Loads the COBOL85 library
Loads the subroutine library

Loader indicates all references are satisfied
Returns to PRIMOS level

Note

Any name may be supplied for the runfile. A name ending with .SEG is suggested to identify
runfiles, and to allow the default execution method described below.

Load Error Messages
If the message WARNING - LOAD NOT COMPLETE is displayed, the cause may be

• Not loading necessary libraries such as VSRTLI or COBOL85LIB
• Not loading a program named in a CALL statement

To list all unresolved references, go through the loading routine and, after the final LI, enter
MAP 3. The MAP command is discussed in the SEG and LOAD Reference Guide.

Executing Loaded Programs — Runtime
Any of the following methods start program execution.

Executing Default Runfiles
If the runfile name ends in .SEG, you can execute the runfile by using only the source
program name, because, given pathname, SEG looks first for pathname.SEG, then for
pathname. For the default runfile MYPROG.SEG in the previous example, execution is
accomplished with

OK, SEG MYPROG

Execution of Other Runfiles
For runfiles whose names do not end in .SEG, execution is performed at the PRIMOS level
using the SEG command

SEG runfilename

First Edition M-3

COBOL85 Reference Guide

where runfilename is the pathname of a runfile created as described in the section titled The
Older Loading Procedure above, but whose name does not end with .SEG.

Immediate Execution
A shortcut to saving and executing a loaded program is available. In the loading process
described in the previous sections, immediately after receiving the LOAD COMPLETE
message, enter EXECUTE. This command saves the loaded program and starts executing the
program. The runfile is automatically saved. Use EXECUTE only within the SEG
subprocessor environment (that is, when the prompt $ is displayed).
Upon completion of program execution, control returns to PRIMOS command level.

M-4 First Edition

File Assignments With -FILE_ASSIGN

-

r

r

Interactive File Assignments
If the -FILE_ASSIGN option is used for compilation, interactive file assignments are made
under the following conditions:

• No EXIT PROGRAM statement is included in the program.
• File Descriptions (FDs) are contained in the runfile.

In this case, immediately following the execute command, RESUME runfilename, a request
for runtime File assignments is displayed.

ENTER FILE ASSIGNMENTS:
>

The format for a file assignment is

literal-1 = actual filename

literal-1 is one of the following:

• The literal following the VALUE OF FILE-ID clause in the file-description-entry
• The contents of the data-name following the VALUE OF FILE-ID clause
• If there is no VALUE OF FILE-ID clause in the file-description-entry, the file-name

used in the SELECT clause

literal-1 may not contain more than 32 characters, actual_filename may not contain more
than 128 characters.
For files whose names within literal-1 are not equal to the actual physical filename, enter the
literal, followed by an equal sign, followed by the name of the physical file that is to be
associated with the program filename.
The system displays the prompt character > while waiting for more user input. Make one
entry for each FD whose FILE-ID is to be assigned. Syntax errors are generated during file

First Edition N-1

COBOL85 Reference Guide

Example

assignment for improper formats. When no file assignments remain to be entered, use a slash
mark (/) to conclude the session.
Execution of the application program then begins. When files are accessed in the program,
the system uses the actual filename supplied in order to identify the file. When VALUE OF
FILE-ID IS data-name is used, the contents of the data-name at the time of the OPEN
statement are used to find a match with actual_filename.
At program execution time, if literal-1 entered during file assignment does not match any
filename specified in the program, actualjilename is ignored and file access during OPEN
uses the program filename. In other words, literal-1 is not checked for a match against
filenames within the program during file assignment.
If a VALUE OF FILE-ID is present and no interactive assignment is made, then the
actual_filename is the name specified in VALUE OF FILE-ID. If the clause contains a data-
name, then the COBOL85 program assigns the file pathname to that data-name.

Suppose that in a COBOL85 program the following statements exist:
FD DISK-FILE

VALUE OF FILE-ID IS 'FILEl'.
FD TAPE-FILE

LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'FILE2'.

FD DISK-FILE-2
VALUE OF FILE-ID IS 'FILE3'.

Then an appropriate runtime dialog is

ENTER FILE ASSIGNMENTS:
>FILE1 = MY_DIRECTORY>DATA>DISBURSE
>FILE2 = $MTOf S, MYNAME, Tl
> /

The first response causes PRIMOS to search a directory called MY_DIRECTORY>DATA
for a disk file called DISBURSE to use as DISK-FILE in the program.
The second response assumes that a tape drive is assigned as logical drive 0, with a mounted
tape that contains a volume-id of Tl and an owner-id of MYNAME. You must assign the
tape drive with the PRIMOS ASSIGN statement before you execute the program.
Because no file assignment entry is made for 'FILE3', DISK-FILE-2 is associated with
'FILE3'.

N-2 First Edition

COBOL85 Sample Programs

-
This appendix contains source listings of two programs that process variable-length records,
compiling and linking dialogs for the programs, a sample data file, and sample execution
dialogs.

Contents of Data File

r
r

The data file used in the following two sample programs is a MIDASPLUS indexed file
called CLASS.FILE.MIDAS. The template for the file is created using the MIDASPLUS
utility CREATK. The CREATK dialog follows. For more information, see the MIDASPLUS
User's Guide.

OK, CREATK
[CREATK Rev. 22.0 Copyright (c) 1988, Prime Computer, Inc.]

MINIMUM OPTIONS? YES

FILE NAME? CLASS.FILE.MIDAS
NEW FILE? YES
DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: A
PRIMARY KEY SIZE = : B 6
DATA SIZE IN WORDS = : 0 34 359
SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? NO

KEY TYPE: A
KEY SIZE = : B 40
SECONDARY DATA SIZE IN WORDS = : (CR)

First Edition 0-1

C0B0L85 Reference Guide

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? ITS

KEY TYPE: A
KEY SIZE - : B 20
SECONDARY DATA SIZE IN WORDS = : (CR)

INDEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS
OK,

The following data is loaded into CLASS.FILE.MIDAS by executing
CLASS.BUILD.COBOL85, the first of the two programs below.

NUMBER
COURSE COURSE OF STUDENT STUDENT

RECORD ID TITLE INSTRUCTOR STUDENTS NAME ID

1 : 111111

2 : 222222

3 : 333333

COURSE 1 INSTRUCTOR 1 002

COURSE 2 INSTRUCTOR 2 001

COURSE 3 INSTRUCTOR 2 000

STUDENT 1 111111
STUDENT 2 222222

STUDENT 1 111111

Source Listing — CLASS.BUILD.COBOL85
The following is a source listing of the program CLASS.BUILD.COBOL85.

IDENTIFICATION DIVISION.
PROGRAM-ID. CLASSBLD.
AUTHOR. PRIMATE.

REMARKS.
* *
* *
* THIS PROGRAM DEMONSTRATES THE ADDITION OF NEW RECORDS *
* TO A MIDASPLUS INDEXED FILE THAT CONTAINS *
* V A R I A B L E - L E N G T H R E C O R D S . *
* *
* *

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* *
* *
* EACH RECORD IN THE CLASS FILE CONTAINS A UNIQUE PRIMARY KEY *
* (COURSE ID), A UNIQUE SECONDARY KEY (COURSE TITLE), AND A *
* NON-UNIQUE SECONDARY KEY (INSTRUCTOR NAME). *
* *
* *

0-2 First Edition

COBOL85 Sample Programs

SELECT CLASS-FILE
ASSIGN TO MIDASPLUS
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
FILE STATUS IS WS-CLASS-FILE-STATUS
RECORD KEY IS COURSE-ID
ALTERNATE RECORD KEY IS COURSE-TITLE
ALTERNATE RECORD KEY IS INSTRUCTOR-NAME WITH DUPLICATES.
DATA DIVISION.
FILE SECTION.

* *
* *
* EACH RECORD MAY CONTAIN FROM 0 TO 25 STUDENTS DEPENDING UPON *
* E N R O L L M E N T . *
* *
* *

FD CLASS-FILE
RECORD IS VARYING FROM 68 TO 718 CHARACTERS
VALUE OF FILE-ID IS WS-CLASS-FILE-NAME.

01 CLASS-REC.
05 COURSE-ID
05 COURSE-TITLE
05 INSTRUCTOR-NAME
05 NUMBER-OF-STUDENTS
05 STUDENT-RECORD

10 STUDENT-ID
10 STUDENT-NAME

PIC 9(06) .
PIC X(40) .
PIC X(20) .
PIC 9(04) COMP.
OCCURS 0 TO 25 TIMES
DEPENDING ON
NUMBER-OF-STUDENTS
INDEXED BY STUD-INDX.
PIC 9(06) .
PIC X(20) .

WORKING-STORAGE SECTION.

* *
* *
* EACH RECORD IS FIRST BUILT IN WORKING STORAGE AND THEN *
* WRITTEN TO THE MIDASPLUS FILE. NOTE THAT WS-STUDENT-RECORD *
* ARRAY ALLOWS FOR A MAXIMUM OF 25 STUDENTS. *
* *
* *

r
r

01 WS-CLASS-REC.
05 WS-COURSE-ID
05 WS-COURSE-TITLE
05 WS-INSTRUCTOR-NAME
05 WS-NUMBER-OF-STUDENTS
05 WS-STUDENT-RECORD

10 WS-STUDENT-ID
10 WS-STUDENT-NAME

PIC 9(06).
PIC X(40).
PIC X(20) .
PIC 9(04) COMP.
OCCURS 25 TIMES
INDEXED BY WS-STUD-INDX.
PIC 9(06).
PIC X(20) .

First Edition 0-3

C0B0L85 Reference Guide

01 WORK-FIELDS.
05 WS-CLASS-FILE-NAME PIC X(80) VALUE SPACES
05 WS-CLASS-FILE-STATUS PIC 9(02) VALUE ZEROES
0 5 W S - C L A S S - S W P I C X (0 1) VA L U E S PA C E S

8 8 E N D - O F - C L A S S E S V A L U E ' Y ' .
0 5 W S - S T U D E N T- S W P I C X (0 1) VA L U E S PA C E S

8 8 E N D - O F - S T U D E N T S V A L U E ' Y ' .
PROCEDURE DIVISION.

0000-MAINLINE.

PERFORM 1000-INITIALIZE THRU 1000-EXIT.

PERFORM 2000-PROCESS-CLASSES THRU 2000-EXIT
UNTIL END-OF-CLASSES.

PERFORM 3000-FINISH-UP THRU 3000-EXIT.

STOP RUN.

0000-EXIT.
EXIT.

1000-INITIALIZE.
DISPLAY 'ENTER OUTPUT FILE NAME

ACCEPT WS-CLASS-FILE-NAME.
OPEN OUTPUT CLASS-FILE.
MOVE 'N' TO WS-CLASS-SW.

1000-EXIT.
EXIT.

2000-PROCESS-CLASSES.

* *
* *
* DISPLAY PROMPTS AND PROCESS USER'S INPUT UNTIL USER QUITS. *
* *
* *

MOVE SPACES TO WS-CLASS-REC.

DISPLAY ' '.
DISPLAY 'ENTER COURSE TITLE
DISPLAY '(ENTER "QUIT" WHEN FINISHED)'.

ACCEPT WS-COURSE-TITLE.

IF WS-COURSE-TITLE = 'QUIT'
MOVE SPACES TO WS-COURSE-TITLE
MOVE 'Y' TO WS-CLASS-SW
GO TO 2000-EXIT.

DISPLAY ' '.
DISPLAY 'ENTER COURSE NUMBER
ACCEPT WS-COURSE-ID.

0-4 First Edition

COBOL85 Sample Programs

C

DISPLAY ' '.
DISPLAY 'ENTER INSTRUCTOR''S NAME
ACCEPT WS-INSTRUCTOR-NAME.

MOVE 'N' TO WS-STUDENT-SW.
MOVE 0 TO WS-NUMBER-OF-STUDENTS.

PERFORM 2100-PROCESS-STUDENTS THRU 2100-EXIT
VARYING WS-STUD-INDX FROM 1 BY 1

UNTIL END-OF-STUDENTS
OR WS-STUD-INDX > 25.

IF WS-STUD-INDX > 25
DISPLAY ' '
DISPLAY '*** WARNING ***'
DISPLAY 'ENROLLMENT LIMIT HAS BEEN REACHED'
DISPLAY 'COURSE ' WS-COURSE-ID ' IS FULL '
DISPLAY ' '.

WRITE CLASS-REC FROM WS-CLASS-REC
INVALID KEY

DISPLAY ' '
DISPLAY '*** ERROR ***'
EXHIBIT WS-COURSE-ID
EXHIBIT WS-CLASS-FILE-STATUS
DISPLAY ' '.

2000-EXIT.
EXIT.

2100-PROCESS-STUDENTS.

* *
* DISPLAY PROMPTS AND PROCESS USER'S INPUT UNTIL USER QUITS *
* OR 25 STUDENTS HAVE BEEN ENROLLED IN A GIVEN COURSE. *
* *

DISPLAY ' '.
DISPLAY 'ENTER STUDENT NAME
DISPLAY '(ENTER "QUIT" WHEN FINISHED)'.
ACCEPT WS-STUDENT-NAME (WS-STUD-INDX).

IF WS-STUDENT-NAME (WS-STUD-INDX) = 'QUIT'
MOVE SPACES TO WS-STUDENT-NAME (WS-STUD-INDX)
MOVE 'Y' TO WS-STUDENT-SW
GO TO 2100-EXIT.

DISPLAY ' '.
DISPLAY 'ENTER STUDENT NUMBER
ACCEPT WS-STUDENT-ID (WS-STUD-INDX).

ADD 1 TO WS-NUMBER-OF-STUDENTS.

2100-EXIT.
EXIT.

r
r First Edition 0-5

COBOL85 Reference Guide

3000-FINISH-UP.

CLOSE CLASS-FILE.

3000-EXIT.
EXIT.

Compile and Link Dialog — CLASS.BUILD.COBOL85
The preceding program, stored as CLASS.BUILD.COBOL85, can be compiled and linked
with the following dialog.

OK, COBOL85 CLASS.BUILD -LISTING -VARY
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: CLASS.BUILD.COBOL85]

OK, BIND
[BIND Rev. 22.0 Copyright (c) 1988, Prime Computer, Inc.]

LO CLASS.BUILD
LI COBOL85LIB
L I

BIND COMPLETE
: FILE
OK,

Program Execution — CLASS.BUILD.COBOL85
The following is a sample execution dialog for the program CLASS.BUILD.COBOL85.

OK, RESUME CLASS.BUILD

ENTER OUTPUT FILE NAME
CLASS. FILE. MIDAS

ENTER COURSE TITLE
(ENTER "QUIT" WHEN FINISHED)
COURSE 1

ENTER COURSE NUMBER
m i n
ENTER INSTRUCTOR'S NAME
INSTRUCTOR I

ENTER STUDENT NAME
(ENTER "QUIT" WHEN FINISHED)
STUDENT 1

ENTER STUDENT NUMBER
n u n

* >

0-6 First Edition

COBOL85 Sample Programs

r

ENTER STUDENT NAME
(ENTER "QUIT" WHEN FINISHED)
STUDENT 2

ENTER STUDENT NUMBER
222222

ENTER STUDENT NAME
(ENTER "QUIT" WHEN FINISHED)
Q U I T

ENTER COURSE TITLE
(ENTER "QUIT" WHEN FINISHED)
COURSE 2

ENTER COURSE NUMBER
222222

ENTER INSTRUCTOR'S NAME
INSTRUCTOR 2

ENTER STUDENT NAME
(ENTER "QUIT" WHEN FINISHED)
STUDENT 1

ENTER STUDENT NUMBER
m i n
ENTER STUDENT NAME
(ENTER "QUIT" WHEN FINISHED)
QUIT

ENTER COURSE TITLE
(ENTER "QUIT" WHEN FINISHED)
COURSE 3

ENTER COURSE NUMBER
333333

ENTER INSTRUCTOR'S NAME
INSTRUCTOR 2

ENTER STUDENT NAME
(ENTER "QUIT" WHEN FINISHED)
QUIT

ENTER COURSE TITLE
(ENTER "QUIT" WHEN FINISHED)
QUIT
OK,

r
r First Edition 0-7

COBOL85 Reference Guide

Source Listing — CLASS.INQUIRYCOBOL85
The following is a source listing of the program CLASS.INQUIRY.COBOL85.

IDENTIFICATION DIVISION.
PROGRAM-ID. CLASSINQ.
A U T H O R . P R I M A T E .

REMARKS.
* *
* *
* THIS INQUIRY PROGRAM DEMONSTRATES THE PROCESSING OF A *
* MIDASPLUS INDEXED FILE THAT CONTAINS VARIABLE- *
* L E N G T H R E C O R D S . *
* *
* *

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

* *
* *
* EACH RECORD IN THE CLASS FILE CONTAINS A UNIQUE PRIMARY KEY *
* (COURSE ID), A UNIQUE SECONDARY KEY (COURSE TITLE), AND A *
* NON-UNIQUE SECONDARY KEY (INSTRUCTOR NAME) . *
* *
* *

SELECT CLASS-FILE
ASSIGN TO MIDASPLUS
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
FILE STATUS IS WS-CLASS-FILE-STATUS
RECORD KEY IS COURSE-ID
ALTERNATE RECORD KEY IS COURSE-TITLE
ALTERNATE RECORD KEY IS INSTRUCTOR-NAME WITH DUPLICATES.

DATA DIVISION.
FILE SECTION.

* *
* *
* EACH RECORD MAY CONTAIN FROM 0 TO 25 STUDENTS DEPENDING UPON *
* E N R O L L M E N T . *
* *
* *

FD CLASS-FILE
RECORD IS VARYING FROM 68 TO 718 CHARACTERS
VALUE OF FILE-ID IS WS-CLASS-FILE-NAME.

0-8 First Edition

01 CLASS-REC.
05 COURSE-ID
05 COURSE-TITLE
05 INSTRUCTOR-NAME
05 NUMBER-OF-STUDENTS
05 STUDENT-RECORD

10 STUDENT-ID
10 STUDENT-NAME

COBOL85 Sample Programs

PIC 9(06).
PIC X(40).
PIC X(20) .
PIC 9(04) COMP.
OCCURS 0 TO 25 TIMES
DEPENDING ON
NUMBER-OF-STUDENTS
INDEXED BY STUD-INDX
PIC 9(06) .
PIC X(20).

'

PIC X(20)
PIC X(80)
PIC 9(02)
PIC X(01)

PIC X(01)

WORKING-STORAGE SECTION.

01 WORK-FIELDS.
05 WS-INSTRUCTOR-NAME
05 WS-CLASS-FILE-NAME
05 WS-CLASS-FILE-STATUS
05 WS-CLASS-SW

8 8 END-OF-CLASSES
05 WS-OPTION

88 LIST-BY-COURSE-ID
88 LIST-BY-COURSE-TITLE
8 8 LIST-BY-INSTRUCTOR
88 QUIT

PROCEDURE DIVISION.

0000-MAINLINE.

PERFORM 1000-INITIALIZE THRU 1000-EXIT.

PERFORM 2000-PROCESS-INQUIRY THRU 2000-EXIT
UNTIL QUIT.

PERFORM 3000-FINISH-UP THRU 3000-EXIT.

STOP RUN.

0000-EXIT.
EXIT.

VALUE SPACES.
VALUE SPACES.
VALUE ZEROES.
VALUE SPACES.
VALUE ' Y' .
VALUE SPACES.
VALUE '1' .
VALUE '2' .
VALUE '3'.
VALUE '4'.

r

1000-INITIALIZE.

DISPLAY ' '.
DISPLAY 'ENTER CLASS FILE NAME
ACCEPT WS-CLASS-FILE-NAME.
OPEN INPUT CLASS-FILE.

First Edition 0-9

C0B0L85 Reference Guide

1000-EXIT.
EXIT.

2000-PROCESS-INQUIRY.

* *
* *
* DISPLAY MENU AND PROCESS USER'S INQUIRIES UNTIL USER QUITS *
* *
* *

DISPLAY '
DISPLAY '***** SELECT OPTION BY NUMBER ***** '.
DISPLAY '
DISPLAY '1
DISPLAY '
DISPLAY '2
DISPLAY '
DISPLAY '3
DISPLAY '
DISPLAY '4
DISPLAY '

LIST STUDENTS ENROLLED BY COURSE ID '

LIST STUDENTS ENROLLED BY COURSE TITLE

LIST STUDENTS ENROLLED BY INSTRUCTOR '

EXIT '.

ACCEPT WS-OPTION.
IF LIST-BY-COURSE-ID

PERFORM 2100-LIST-BY-COURSE-ID THRU 2100-EXIT
GO TO 2000-EXIT.

IF LIST-BY-COURSE-TITLE
PERFORM 2200-LIST-BY-COURSE-TITLE THRU 2200-EXIT
GO TO 2000-EXIT.

IF LIST-BY-INSTRUCTOR
PERFORM 2300-LIST-BY-INSTRUCTOR THRU 2300-EXIT
GO TO 2000-EXIT.

IF QUIT
DISPLAY ' '
DISPLAY 'BYE NOW! ! !'
DISPLAY ' '
GO TO 2000-EXIT.

2000-EXIT.
EXIT.

210 0-LIST-BY-COURSE-ID.

0-10 First Edition

C0B0L85 Sample Programs

* *

* READ CLASS FILE USING COURSE-ID (PRIMARY KEY) AND LIST
* STUDENTS ENROLLED.
* *
* *

DISPLAY ' '.
DISPLAY 'ENTER COURSE NUMBER '.
DISPLAY '(ENTER SPACES TO RETURN TO MAIN MENU)'.

ACCEPT COURSE-ID.
IF COURSE-ID = SPACES

GO TO 2100-EXIT.

READ CLASS-FILE
INVALID KEY

DISPLAY ' '
DISPLAY '*** ERROR ***'
EXHIBIT COURSE-ID
EXHIBIT WS-CLASS-FILE-STATUS
DISPLAY ' '
GO TO 2100-EXIT.

DISPLAY ' '
DISPLAY 'STUDENTS ENROLLED IN COURSE ' COURSE-ID.

PERFORM 9000-EXHIBIT-CLASS-REC.

2100-EXIT.
EXIT.

2200-LIST-BY-COURSE-TITLE.

* *
* *
* READ CLASS FILE USING COURSE-TITLE (UNIQUE SECONDARY KEY) *
* A N D L I S T S T U D E N T S E N R O L L E D . *
* *
* *

DISPLAY ' '.
DISPLAY 'ENTER COURSE TITLE ' .
DISPLAY '(ENTER SPACES TO RETURN TO MAIN MENU)'.

ACCEPT COURSE-TITLE.
IF COURSE-TITLE = SPACES

GO TO 2200-EXIT.

r
First Edition 0-11

COBOL85 Reference Guide

READ CLASS-FILE
KEY IS COURSE-TITLE
INVALID KEY

DISPLAY ' '
DISPLAY '*** ERROR ***'
EXHIBIT COURSE-TITLE
EXHIBIT WS-CLASS-FILE-STATUS
DISPLAY ' '
GO TO 2200-EXIT.

DISPLAY ' '
DISPLAY 'STUDENTS ENROLLED IN ' COURSE-TITLE.

PERFORM 9000-EXHIBIT-CLASS-REC.

2 2 0 0 - E X I T.
E X I T.

2300-LIST-BY-INSTRUCTOR.

* *
* *
* READ CLASS FILE USING INSTRUCTOR-NAME (NON-UNIQUE SECONDARY *
* K E Y) A N D L I S T S T U D E N T S E N R O L L E D . *
* *
* *

DISPLAY ' '.
DISPLAY 'ENTER INSTRUCTOR NAME '.
DISPLAY '(ENTER SPACES TO RETURN TO MAIN MENU)'.

ACCEPT INSTRUCTOR-NAME
IF INSTRUCTOR-NAME = SPACES

GO TO 2300-EXIT.

START CLASS-FILE
KEY IS EQUAL TO INSTRUCTOR-NAME
INVALID KEY

DISPLAY ' '
DISPLAY '*** ERROR ***'
EXHIBIT INSTRUCTOR-NAME
EXHIBIT WS-CLASS-FILE-STATUS
DISPLAY ' '
GO TO 2300-EXIT.

DISPLAY ' '
DISPLAY 'STUDENTS ENROLLED IN COURSES TAUGHT BY '

INSTRUCTOR-NAME.

MOVE 'N' TO WS-CLASS-SW.
MOVE INSTRUCTOR-NAME TO WS-INSTRUCTOR-NAME.

* >

~

0-12 First Edition

COBOL85 Sample Programs

r
r

PERFORM 2310-PROCESS-CLASSES THRU 2310-EXIT
UNTIL END-OF-CLASSES.

2300-EXIT.
EXIT.

2310-PROCESS-CLASSES.
READ CLASS-FILE NEXT RECORD

AT END
MOVE ZEROES TO WS-CLASS-FILE-STATUS
MOVE 'Y' TO WS-CLASS-SW
GO TO 2310-EXIT.

IF INSTRUCTOR-NAME = WS-INSTRUCTOR-NAME
PERFORM 9000-EXHIBIT-CLASS-REC

ELSE
MOVE 'Y' TO WS-CLASS-SW.

2310-EXIT.
EXIT.

3000-FINISH-UP.

CLOSE CLASS-FILE.

3000-EXIT.
EXIT.

9000-EXHIBIT-CLASS-REC.

* *
* *
* LIST 0 TO 25 STUDENTS DEPENDING UPON ENROLLMENT. *
* *
* *

DISPLAY ' '.
EXHIBIT COURSE-TITLE.
EXHIBIT COURSE-ID.
EXHIBIT INSTRUCTOR-NAME.

IF NUMBER-OF-STUDENTS > 0
PERFORM 9010-EXHIBIT-STUDENTS THRU 9010-EXIT

VARYING STUD-INDX FROM 1 BY 1
UNTIL STUD-INDX > NUMBER-OF-STUDENTS

ELSE
DISPLAY ' '
DISPLAY 'NO STUDENTS ENROLLED IN THIS COURSE'
DISPLAY ' '.

9000-EXIT.
EXIT.

9010-EXHIBIT-STUDENTS.

First Edition O-13

COBOL85 Reference Guide

DISPLAY ' '.
EXHIBIT STUDENT-NAME (STUD-INDX).
EXHIBIT STUDENT-ID (STUD-INDX).
DISPLAY ' '.

9010-EXIT.
EXIT.

Compile and Link Dialog — CLASS.INQUIRYCOBOL85
The preceding program, stored as CLASS .INQUIRY.COBOL85, can be compiled and linked
with the following dialog.

OK, COBOL85 CLASS.INQUIRY -LISTING -VARY
[COBOL85 Rev. 1.0-22.0 Copyright (c) Prime Computer, Inc. 1988]
[0 ERRORS IN PROGRAM: CLASS.INQUIRY.COBOL85]

OK, BIND
[BIND Rev. 22.0 Copyright (c) 1988, Prime Computer, Inc.]

LO CLASS.INQUIRY
LI COBOL85LIB
L I

BIND COMPLETE
: FILE
OK,

Program Execution — CLASS.INQUIRYCOBOL85
The following is a sample execution dialog for the program CLASS.INQUIRY.COBOL85.

OK, RESUME CLASS.INQUIRY

ENTER CLASS FILE NAME
CLASS. FILE. MIDAS

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

1

0-14 First Edition

ENTER COURSE NUMBER
(ENTER SPACES TO RETURN TO MAIN MENU)
m i n
STUDENTS ENROLLED IN COURSE 111111

COURSE-TITLE = COURSE 1
COURSE-ID = 111111
INSTRUCTOR-NAME = INSTRUCTOR 1

STUDENT-NAME = STUDENT 1
STUDENT-ID = 111111

COBOL85 Sample Programs

~ STUDENT-NAME = STUDENT 2
STUDENT-ID = 222222

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

LIST STUDENTS ENROLLED BY COURSE TITLE

LIST STUDENTS ENROLLED BY INSTRUCTOR

EXIT

ENTER COURSE NUMBER
(ENTER SPACES TO RETURN TO MAIN MENU)
222222

STUDENTS ENROLLED IN COURSE

COURSE-TITLE = COURSE 2
COURSE-ID = 222222
INSTRUCTOR-NAME = INSTRUCTOR 2

STUDENT-NAME = STUDENT 1
STUDENT-ID = 111111

222222

r

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

First Edition 0-15

COBOL85 Reference Guide

4 : EXIT

1

ENTER COURSE NUMBER
(ENTER SPACES TO RETURN TO MAIN MENU)
333333

STUDENTS ENROLLED IN COURSE 333333

COURSE-TITLE = COURSE 3
COURSE-ID = 333333
INSTRUCTOR-NAME = INSTRUCTOR 2

NO STUDENTS ENROLLED IN THIS COURSE

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

1

ENTER COURSE NUMBER
(ENTER SPACES TO RETURN TO MAIN MENU)
777777

*** ERROR ***
COURSE-ID = 777777
WS-CLASS-FILE-STATUS = 23

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

2

* \

0-16 First Edition

ENTER COURSE TITLE
(ENTER SPACES TO RETURN TO MAIN MENU)
COURSE 1

STUDENTS ENROLLED IN COURSE 1

COURSE-TITLE = COURSE 1
COURSE-ID = 111111
INSTRUCTOR-NAME = INSTRUCTOR 1

STUDENT-NAME = STUDENT 1
STUDENT-ID = 111111

COBOL85 Sample Programs

STUDENT-NAME = STUDENT 2
STUDENT-ID = 222222

*

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

LIST STUDENTS ENROLLED BY COURSE TITLE

LIST STUDENTS ENROLLED BY INSTRUCTOR

EXIT

ENTER COURSE TITLE
(ENTER SPACES TO RETURN TO MAIN MENU)
COURSE 2

STUDENTS ENROLLED IN COURSE 2

COURSE-TITLE - COURSE 2
COURSE-ID = 222222
INSTRUCTOR-NAME = INSTRUCTOR 2

STUDENT-NAME = STUDENT 1
STUDENT-ID = 111111

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

First Edition 0-17

C0B0L85 Reference Guide

4 : EXIT

2

ENTER COURSE TITLE
(ENTER SPACES TO RETURN TO MAIN MENU]
COURSE 3

STUDENTS ENROLLED IN COURSE 3

COURSE-TITLE = COURSE 3
COURSE-ID = 333333
INSTRUCTOR-NAME = INSTRUCTOR 2

NO STUDENTS ENROLLED IN THIS COURSE

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

2

ENTER COURSE TITLE
(ENTER SPACES TO RETURN TO MAIN MENU)
COURSE 4

*** ERROR ***
COURSE-TITLE = COURSE 4
WS-CLASS-FILE-STATUS = 23

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

3

0-18 First Edition

COBOL85 Sample Programs

ENTER INSTRUCTOR NAME
(ENTER SPACES TO RETURN TO MAIN MENU)
INSTRUCTOR 1

STUDENTS ENROLLED IN COURSES TAUGHT BY INSTRUCTOR 1

COURSE-TITLE = COURSE 1
COURSE-ID = 111111
INSTRUCTOR-NAME = INSTRUCTOR 1

STUDENT-NAME = STUDENT 1
STUDENT-ID = 111111

STUDENT-NAME = STUDENT 2
STUDENT-ID = 222222

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

3

ENTER INSTRUCTOR NAME
(ENTER SPACES TO RETURN TO MAIN MENU)
INSTRUCTOR 2

STUDENTS ENROLLED IN COURSES TAUGHT BY INSTRUCTOR 2

COURSE-TITLE = COURSE 2
COURSE-ID = 222222
INSTRUCTOR-NAME = INSTRUCTOR 2

STUDENT-NAME = STUDENT 1
STUDENT-ID = 111111

COURSE-TITLE = COURSE 3
COURSE-ID = 333333
INSTRUCTOR-NAME = INSTRUCTOR 2

NO STUDENTS ENROLLED IN THIS COURSE

First Edition 0-19

COBOL85 Reference Guide

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

3

ENTER INSTRUCTOR NAME
(ENTER SPACES TO RETURN TO MAIN MENU)
INSTRUCTOR 3

*** ERROR ***
INSTRUCTOR-NAME = INSTRUCTOR 3
WS-CLASS-FILE-STATUS = 23

***** SELECT OPTION BY NUMBER *****

1 : LIST STUDENTS ENROLLED BY COURSE ID

2 : LIST STUDENTS ENROLLED BY COURSE TITLE

3 : LIST STUDENTS ENROLLED BY INSTRUCTOR

4 : EXIT

4

BYE NOW!!!

O-20 First Edition

Glossary

alphabet-name
A programmer-defined word in the SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION that assigns a name to a specific character set or collating sequence.

arithmetic expression (arith-expr)
A numeric data-name, a numeric literal, such data-names and literals separated by arithmetic
operators, two arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses. Any arithmetic expression may be preceded by a unary
operator.

assumed decimal point
A decimal point position that does not involve the existence of an actual character in a data item.
The assumed decimal point has logical meaning but no physical representation.

AT END condition
A condition caused by one of the following:

1. During the execution of a READ statement for a sequentially accessed file, the last
record of the file has been processed, or the number of significant digits in the
relative record number is larger than the size of the relative key data item, or an
optional input file is not present.

2. During the execution of a RETURN statement, no next logical record exists for the
associated sort or merge file.

3. During the execution of a SEARCH statement, the search operation terminates
without satisfying the condition specified in any of the associated WHEN phrases.

BIND
Prime's linker for Executable Program Formats (EPFs).

block
A physical unit of data that is normally composed of one or more logical records. For mass storage
files, a block may contain a portion of a logical record. The size of a block has no direct
relationship to the size of the file within which the block is contained or to the size of the logical
rccord(s) that are either continued within the block or that overlap the block. The term is
synonymous with physical record.

First Edition P-1

COBOL85 Reference Guide

called program
A program that is the object of a CALL statement combined at object time with the calling program
to produce a run unit.

calling program
A program that executes a CALL to another program.

character
The basic indivisible unit of the language.

character position
A character position is the amount of physical storage required to store a single standard data
format character whose usage is DISPLAY.

clause
An ordered set of consecutive COBOL85 character-strings whose purpose is to specify an attribute
of an entry, or form a portion of a COBOL85 procedural statement.

collating sequence
The sequence in which the characters that are acceptable in a computer are ordered for purposes of
sorting, merging, and comparing.

command line linking or loading
Use of BIND with all necessary options on one command line.

comment line
A source program line represented by an asterisk in the indicator area of the line and any characters
from the computer's character set in Area A and Area B of that line. The comment line serves only
for documentation in a program. A special form of comment line represented by a slash (/) in the
indicator area of the line and any characters from the computer's character set in Area A and Area
B of that line causes page ejection prior to printing the comment.

comment-entry
An entry in the IDENTIFICATION DIVISION that may be any combination of characters from the
computer character set.

condition-name
A user-defined word assigned to a specific value, set of values, or range of values, within the
complete set of values that a conditional variable may possess; or the user-defined word assigned to
a status of an implcmentor-defined switch or device, condition-names are defined with level-
number 88.

conditional variable
A data item that has one or more values to which a condition-name is assigned.

current record
The record that is available in the record area associated with the file.

current record pointer
A conceptual entity that is used to select the next record.

data-description-entry
An entry in the DATA DIVISION that is composed of a level-number followed by a data-name, or
the reserved word FILLER, and then followed by a set of data clauses, as required.

* >

P-2 First Edition

G/ossary

data-name
A user-defined word that names a data item described in a data-description-entry in the DATA
DIVISION. A data-name can be subscripted, indexed, or qualified, unless these attributes are
specifically prohibited by the rules for that format.

declaratives
A set of one or more special-purpose sections, written at the beginning of the PROCEDURE
DIVISION, the first of which is preceded by the keyword DECLARATIVES and the last of which
is followed by the keywords END DECLARATIVES. A declarative is composed of a section
header, followed by a USE sentence, followed by zero, one, or more associated paragraphs.

division header
A combination of words followed by a period and a space that indicates the beginning of a
division. The division headers are

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

dynamic access
An access mode in which records can be obtained from or placed into a mass storage file in a
nonsequential manner (see Random Access) and obtained from a file in a sequential manner (see
Sequential Access), during the scope of the same OPEN statement.

dynamic runfile
Also called an Executable Program Format (EPF); a file containing a description of a complete
program or library that is assigned addresses at program runtime rather than at program link time.
Thus, it may execute in more than one address in memory, and more than one dynamic runfile may
exist in memory at once. BIND produces dynamic runfiles.

editing character
A single character or a fixed two-character combination used in a PICTURE clause to change
output format. Editing characters are listed in the section called PICTURE in Chapter 7.

EPF
Executable Program Format. An EPF consists of binary object code for a complete program. This
includes code, data, and stack allocation information added by BIND to enable you to execute the
file with RESUME, and link to system subroutines at runtime.

elementary item
A data item that is described as not being further subdivided.

file-description-entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator
FD, followed by a file-name, and then followed by a set of file clauses as required.

file-name
A user defined word that names a file described in a file-description-entry or a sort-merge file-
description-entry within the RLE SECTION of the DATA DIVISION.

fixed-length record
A record associated with a file whose file description or sort-merge description entry requires that
all records contain the same number of character positions.

First Edition P-3

COBOL85 Reference Guide

fullword
A unit of address space four bytes (32 bits) in size.

halfword
A unit of address space two bytes (16 bits) in size.

imperative statement
A statement that begins with an imperative verb and specifies an unconditional action to be taken.
An imperative statement may consist of a sequence of imperative statements.

index

1. A computer storage position or register, the contents of which represent the identification of
a particular element in a table.

2. A key that identifies a record for a file whose organization is INDEXED.

index data item
A data item in which the value associated with an index-name can be stored.

index-name
A user-defined word that names an index associated with a specific table.

input procedure
A set of statements that are executed each time a record is released to a sort file.

key
A data item that identifies the location of a record, or a set of data items that serve to identify the
ordering of data.

key of reference
The key, either primary or alternate, currently being used to access records within an indexed file.

level indicator
Two alphabetic characters that identify a specific type of file or a position in a hierarchy. A level
indicator is found only in the DATA DIVISION and must be one of the following: FD, SD.

level-number
A user-defined word that indicates the position of a dala item in the hierarchical structure of a
logical record or that indicates special properties of a data-description-entry. A level-number is
expressed as a one-digit or two-digit number, level-numbers in the range 1 through 49 indicate the
position of a data item in the hierarchical structure of a logical record, level-numbers in the range 1
through 9 may be written either as a single digit or as a zero followed by a significant digit, level-
numbers 66, 77, and 88 identify a data-description-entry with special properties.

linker
A utility that resolves external references within a runfile, so that different pieces of code (such as
a calling program and a subroutine) can find each other at runtime. The Prime linkers, BIND, SEG,
and LOAD, are all linkers in that they all resolve external references as they are given binary files.
BIND, however, leaves all loading to be done dynamically at runtime by PRIMOS.

logical operator
One of the reserved words AND, OR, or NOT. In the formation of a condition, both or cither of
AND and OR can be used as logical connectives. NOT can be used for logical negation.

" >

"

P-4 First Edition

Glossary

merge file
A collection of records to be merged by a MERGE statement. The merge file, identified by SD, is
created and can be used only by the merge function.

MIDASPLUS
A Prime utility that handles indexed and relative file creation and access for COBOL85.

mnemonic-name
A user-defined word that is associated, in the SPECIAL-NAMES paragraph of the
ENVIRONMENT DIVISION, with a specified implementor-name, such as CONSOLE, or a
switch-name.

native character set
Prime's native character set is the ASCII set defined in Appendix B.

noncontiguous items
Elementary data items in the WORKING-STORAGE and LINKAGE SECTION that bear no
hierarchical relationship to other data items.

output procedure
A set of statements to which control is given during execution of a SORT statement after the sort
function is completed, or during execution of a MERGE statement after the merge function has
selected the next record in merged order.

paragraph
In the PROCEDURE DIVISION, a paragraph-name followed by a period, a space, and zero, one,
or more sentences. In the IDENTIFICATION and ENVIRONMENT DIVISION, a paragraph
header followed by zero, one, or more entries.

paragraph header
A reserved word, followed by a period and a space that indicates the beginning of a paragraph in
the IDENTIFICATION and ENVIRONMENT DIVISION. The permissible paragraph headers are

PROGRAM-ID.
AUTHOR.
REMARKS.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
FILE-CONTROL.
I-O-CONTROL.

paragraph-name
A user-defined word that identifies and begins a paragraph in the PROCEDURE DIVISION.
paragraph-names must start in columns 8 through 11.

pathname
The name of a Prime file, including, if necessary, its disk name and the name of the directory and
subdirectories containing it.

First Edition P-5

COBOL85 Reference Guide

phrase
A phrase is an ordered set of one or more consecutive COBOL85 character-strings that form a
portion of a COBOL85 procedural statement or of a COBOL85 clause.

primary index
For MIDASPLUS, the primary record key or relative key.

primary record key
A key whose contents uniquely identify a record within an indexed file.

PRISAM
The Prime Recoverable Indexed Sequential Access Method. Data management interface for
handling indexed and relative files for COBOL85 in a transaction processing environment.

procedure-name
A paragraph-name (which may be qualified) in the PROCEDURE DIVISION, or a section-name
in the PROCEDURE DIVISION.

punctuation character
A character that belongs to the following set:

,;."'(), or the pseudo-text delimiter =

qualified data-name
An identifier that is composed of a data-name followed by OF or IN and another data-name at a
higher level of the same hierarchy. The second data-name may also be qualified.

qualifier

1. A data-name that is used in a reference together with OF or IN and another data-name at a
lower level in the same hierarchy.

2. A section-name that is used in a reference together with OF or IN and a paragraph-name
specified in that section.

3. A library-name that is used in a reference together with OF or IN and a text-name associated
with that library.

random access
An access mode in which the value of a key data item identifies the record to be accessed in or
written to a relative or indexed file.

record-description-entry
The total set of data-description-entries associated with a particular record.

reserved word
A COBOL85 word specified in the list of words in Table B-2 of Appendix B, and which must not
appear in the programs as a user-defined word.

runfile or run unit
The PRIMOS file to be used for execution. It consists of one or more user object files plus any
necessary library files.

P-6 First Edition

Glossary

section
In the PROCEDURE DIVISION, a section-name followed by the word SECTION, an optional
segment number, a period, a space and zero, one or more paragraphs. In the ENVIRONMENT and
DATA DIVISION, a section header followed by zero, one or more entries. Valid section headers
are

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

section-name
A user-defined word that names a section in the PROCEDURE DIVISION, section-names must
start within columns 8-11.

sentence
A sequence of one or more statements, the last of which is terminated by a period followed by a
space.

sequential access
An access mode in which logical records arc obtained from or placed into a file in a consecutive
sequence determined by the order of records in the file.

sort file
A collection of records to be sorted by a SORT statement. The sort file, identified by SD, is created
and can be used by the sort function only.

sort-merge file-description-entry
An entry in the FILE SECTION of the DATA DIVISION that is composed of the level indicator
SD, followed by a file-name, and then followed by a set of file clauses as required.

statement
A syntactically valid combination of words and symbols written in the PROCEDURE DIVISION,
beginning with a verb.

static runfile
A runfile that is assigned addresses when it is linked rather than at runtime. All static runfiles tend
to use the same addresses so that one overwrites another. SEG and LOAD produce static runfiles.
See Dynamic Runfile.

subscript
An occurrence number that identifies a particular element in a table. The occurrence number can be
represented by either an integer, a data-name optionally followed by an integer with the operator +
or -, an index-name optionally followed by an integer with the operator + or -, or an arith-expr
optionally followed by an integer with the operator + or -.

table
A set of logically consecutive items, all of the same description, that are defined in die DATA
DIVISION with the OCCURS clause.

table element
A data item in a set of repeated items comprising a table.

First Edition P-7

COBOL85 Reference Guide

unary operator
A plus or a minus sign that precedes a variable or a left parenthesis in an arithmetic expression and
that has the effect of multiplying the expression by +1 or -1, respectively.

variable-length record
A record associated with a file whose file description or sort-merge description entry permits
records to contain a varying number of character positions.

variable occurrence data item
A variable occurrence data item is a table element that is repeated a variable number of times. Such
an item must contain an OCCURS DEPENDING ON clause in its data-description-entry, or be
subordinate to such an item.

word

1. In storage, 32 bits.
2. A COBOL85 word is a character-string of not more than 30 characters chosen from the

following set of 64 characters:

0-9 (digits)
A-Z (uppercase letters)
a-z (lowercase letters)- (hyphen)

(underscore)

All words except level-numbers, section-names, segment-numbers, and paragraph-names
must contain at least one alphabetic character or a hyphen. A word must not begin or end
with a hyphen. It is delimited by a space, or by proper punctuation. A word may contain
more than one embedded hyphen; consecutive embedded hyphens are also permitted.

P-8 First Edition

Index

Index

Symbols
- (pseudo-text delimiter), 4-8, 15-1

Numbers
-64V compiler option, 2-5

Abbreviated combined conditions, 4-40
ACCEPT, 8-9
ACCESS MODE IS DYNAMIC, 6-9
ACCESS MODE IS RANDOM, 6-9
ACCESS MODE IS SEQUENTIAL 6-8
ADD, 8-11
Algebraic signs, 4-29

editing, 4-29
operational, 4-29

Alignment rules, 4-26
-ALLERRORS compiler option, 2-5
ALPHABET, 6-7
Alphabetic item, 4-20
Alphabet-name, 4-16, 6-3, 6-7, P-l
Alphanumeric edited item, 4-21
Alphanumeric item, 4-21
ALTER, 8-13
Alternate record key

see: Secondary record key
ALTERNATE RECORD KEY, 6-9
ALTERNATE RECORD KEY WITH

DUPLICATES, 6-9
ANSI standard

Prime extensions to, F-3
Prime support of, F-l

-ANSLOBSOLETE compiler option,
2-5, G-l

Arithmetic expression (arith-expr), P-l

Arithmetic expressions, 4-30
arithmetic operators, 4-31
arithmetic statements, 4-33
overlapping operands, 4-34
rules, 4-32
types, 4-30

Arithmedc operators
binary, 4-31
unary, 4-31

Arithmetic statements, 8-6
CORRESPONDING, 8-8
GIVING, 8-7
NOT ON SIZE ERROR, 8-8
ON SIZE ERROR, 8-8
ROUNDED, 8-7
scope terminators, 8-9

ASSIGN command, 12-13
ASSIGN TO 6-8
Assignment error messages, tape files,

12-14
Assumed decimal point, P-l
Asterisk

comment line, 4-7
PICTURE symbol, 7-34

AT END condition, P-l
indexed files, 10-4
relative files, 11-4
sequential files, 9-3

B
Batch environment, 1-3
-BIG_TABLES compiler option, 2-5
BINARY, 4-23
-BINARY compiler option, 2-6
BIND. 1-5, P-l

FILE subcommand, 3-2
HELP subcommand, 3-4

LIBRARY subcommand, 3-2
LOAD subcommand, 3-1
MAP subcommand, 3-3
QUIT subcommand, 3-4
RELOAD subcommand, 3-4
subcommands, 3-1
using from command line, 3-3
using interactively, 3-1

BLANK WHEN ZERO, 7-22
Block, P-l
BLOCK CONTAINS, 7-9

tape files, 12-15
Blocking strategy, tape files, 12-2

-CALCINDEX compiler option, 2-6
CALL 8-14

interprogram communication, 13-3
Called program, 13-1, P-2
Calling program, 13-1, P-2
Calling programs

from EPF library, 13-8
from other programs, 13-3
in other languages, 13-10

CANCEL, 8-14
interprogram communication, 13-4

Carriage control, integer values, 9-12
Categories of data

see: Data categories
Character, P-2
Character position, P-2
Character set

COBOL85, 4-9
collating sequence, 4-10
EBCDIC, B-33
Prime ECS, B-8 to B-l6, 4-10
Prime extensions, 4-9

First Edition X-1

COBOL85 Reference Guide

Standard-1 ASCH, B-17
Standard-2 ASCH, B-28 to B-31

Character-string, 4-11
CLASS, 6-7
Class condition, 4-36
Classes and categories of data

description, 4-20
relationship of, 4-21

Classes of data
see: Data classes

Class-name, 4-16, 6-7
Clause, P-2
CLOSE, 8-15

indexed files, 10-10
relative files, 11-10
sequential files, 9-4
tape files, 12-20

CLOSE status codes, sequential files, 9-5
COBOL85

character set, 4-9
coding rules, 4-7
compiler, 2-1
conversion from CBL, 1-2, H-l
formats, A-1
implementation, 1-2
implementation-dependent features, 1-1
library files, J-l
operating environment, 1-2
program example, 4-4
program format, 4-3
summary of program divisions, 4-1

COBOL85 command, 2-1
COBOL85 compiler, 2-1

error messages, 2-2
options, 2-5
output, 2-3

COBOL85 symbols, table of, B-2 to B-4
CODE-SET, 7-9

tape files, 12-16
Coding rules, 4-7
Collating sequence, 6-3, 6-7, 14-7,

14-17, P-2
Combined condition, 4-38
Comma as separator, 4-8
Command line linking or loading, P-2
Comment line, P-2
Comment-entry, P-2
Common block, 7-23
COMP, 4-23
-COMP compiler option, 2-6
COMP-1, 4-25
COMP-2, 4-25
COMP-3, 4-23
Comparisons

see: IF
Compiler error messages, 2-2, C-l

X-2 First Edition

Compiler options, defined, 2-5
list of, 2-15

Compiling programs, 2-1
Complex condition, 4-38
Composite of operands, 8-6
COMPRESSED, 7-7
Computational data types, 2-6
COMPUTATIONAL, 4-23
COMPUTATIONAL1, 4-25
COMPUTATIONAL2, 4-25
COMPUTATIONAL3, 4-23
COMPUTE, 8-15
Computer-name, 6-3
Condition evaluation rules, 4-40
Conditional expressions, 4-34

abbreviated combined conditions, 4-40
class condition, 4-36
combined conditions, 4-38
complex conditions, 4-38
condition evaluation rules, 4-40
condition-name condition, 4-37
multiple conditions, 4-39
negated combined conditions, 4-38
negated simple conditions, 4-38
nonnumeric comparisons, 4-35
numeric comparisons, 4-35
relation condition, 4-34
sign condition, 4-38
simple conditions, 4-34
switch-status condition, 4-37

Conditional variable, 7-20, P-2
Condition-name, 4-15, P-2
Condition-name condition, 4-37
CONFIGURATION SECTION, 6-2
Connectives, 4-14

logical, 4-14
qualifier, 4-14
series, 4-14

CONSOLE, 6-6
Continuation of literals, 4-19
CONTINUE, 8-16
Conventions

documentation, xvii
filename, xviii

Conversion from CBL
compiler options, H-8
DATA DIVISION, H-10
ENVIRONMENT DIVISION, H-9
error handling, H-2
new l-O status codes, H-2
new reserved words, H-l
PROCEDURE DIVISION, H-ll
record size conflicts, H-13

COPY, 15-1
with search rules, 15-5

CORRESPONDING, 8-8

-CORRMAP compiler option, 2-7
Current record, P-2
Current record pointer, P-2

indexed files, 10-3
relative files, 11-3
sequential files, 9-2

D
Data categories

alphabetic, 4-20, 7-31
alphanumeric, 7-32
alphanumeric edited, 4-20, 7-32
numeric, 4-20, 7-32
numeric edited, 4-20, 7-32
with PICTURE clause, 7-31

Data categories, alphanumeric, 4-20
Data classes

alphabetic, 4-20
alphanumeric, 4-20
numeric, 4-20

DATA DIVISION, 7-1
example, 7-48
FILE SECTION, 7-2
file-description-entry, 7-6
format, 7-2
indexed files, 10-9
LINKAGE SECTION, 7-4
merge operations, 14-4
reoord-description-entry, 7-16
relative files, 11-9
rules, 7-2
sort operations, 14-4
tape files, 12-15
WORKING-STORAGE SECTION,

7-3
Data levels

elementary item, 4-20
group item, 4-20

DATA RECORDS, 7-9
Data representation and alignment, 4-22

alignment of substructures within
structures, 4-27

automatic alignment, 4-27
binary item, 4-23
double-precision floating-point item,

4-25
index item, 4-24
packed decimal item, 4-23
single-precision floating-point item,

4-25
standard alignment rules, 4-26
Unpacked decimal item, 4-22

Data-description-entry, P-2
Data-name, 4-15, 7-21, P-3

* >

3
"

Index

'

-

r

Data type compatibility, 13-11
-DATA_REPOPT compiler option, 2-7
DATE-COMPILED, 5-2
DBG

see: Source level debugger
-DEBUG compiler option, 2-7
Debugger interface, E-1
Decimal data types table, B-38
DECIMAL-POINT IS COMMA, 6-8
Declarative sections, 8-4

see also: USE
Declaratives, P-3
DELETE, 8-17

indexed files, 10-10
relative files, 11-11

DELETE status codes
indexed files, 10-11
relative files, 11-12

Device-names, table of, 6-10
Diagnostics

see: Error messages
Direct access files

see: Relative files
DISPLAY, 4-22, 8-17
DIVIDE, 8-20
Division header, P-3
Double-precision floating-point item,

4-25
Dynamic access, P-3
Dynamic runfile, P-3

EBCDIC character set, B-33
Editing character, P-3
Editing signs, 4-29
Editors, 1-4
EJECT, 8-23
Elementary item, 4-20, P-3
END-ADD, 8-13
END-CALL 13-3
END-COMPUTE, 8-16
END-DELETE, 10-11, 11-11
END-DIVIDE, 8-23
END-IF, 8-26, 8-28
END-MULTIPLY, 8-40
End-of-file label record, 12-9
End-of-volume label record, 12-9
END-PERFORM, 843, 8-49
END-READ, 9-9, 10-15, 11-15
END-RETURN, 14-13
END-REWRITE, 9-10, 10-19, 11-11
END-SEARCH, 8-55
END-START, 10-21,11-20
END-STRING, 8-66

END-SUBSTRACT, 8-68
END-UNSTRING, 8-71
END-WRJTE, 9-12, 10-24, 11-22
ENTER, 8-23

interprogram communication, 13-5
ENVIRONMENT DIVISION, 6-1

CONFIGURATION SECTION, 6-2
example, 6-13
format, 6-1
indexed files, 10-7
INPUT-OUTPUT SECTION, 6-8
merge operations, 14-2
relative files, 11-7
rules, 6-2
sort operations, 14-2
tape files, 12-14

EOF1/EOF2
see: End-of-file label record

EOV1/EOV2
see: End-of-volume label record

EPF, P-3
see also: Executable program format

Error conditions
see: Exception conditions

Error handling
see: Exception handling

Error messages
compiler, 2-2, C-l
PRIMOS, C-3
runtime, C-2
tape file assignment, 12-14

Error reporting, magnetic tape, 12-24
CLOSE operations, 12-29
general, 12-24
OPEN INPUT operations, 12-26
OPEN operations, 12-25
OPEN OUTPUT operations, 12-25
READ operations, 12-28
WRITE operations, 12-27

-ERRORFILE compiler option, 2-7
-ERRTTY compiler option, 2-7
Exception conditions

indexed files, 10-5
relative files, 11-5
sequential files, 9-3

Exception handling
declaratives, 4-56
file status codes, 4-57
1-0 status, 4-56
optional phrases, 4-56

Executable Program Format (EPF)
creating with BIND, 3-1
executing with RESUME, 3-5

Executing programs, 3-5
see also: Running programs

Executing tape programs
assignment error messages, 12-14
tape drive assignments, 12-13
tape file assignments with

-FILE_ASSIGN, 12-13
tape file assignments within program,

12-13
EXHIBIT, 8-23
EXIT, 8-24
EXIT PROGRAM, 8-24

interprogram communication, 13-5
Explicit scope terminators, 8-4
-EXPLIST compiler option, 2-8
EXTERNAL, 7-8, 7-23

file-description-entry, 7-8
record-description-entry, 7-23

FD
see: file-description-entry

Figurative constants, 4-13
File, 4-15
-FILE_ASSIGN compiler option, 2-8,

3-6, 12-13, N-1
File assignments at runtime, 3-6, N-1
File availability, B-34
FILE SECTION, 7-2

format, 7-3
merge operations, 14-4
rules, 7-3
sort operations, 14-4

FILE STATUS, 6-8
indexed files, 10-3
relative files, 11-3
sequential files, 9-2

File status codes, 4-57
FILE subcommand of BIND, 3-2
FILE-CONTROL, 6-8

format, 6-8
indexed files, 10-7
relative files, 11-8
rules, 6-9
SELECT, 6-8

File-control-entry, 6-8
ACCESS MODE IS DYNAMIC, 6-9
ACCESS MODE IS RANDOM, 6-9
ACCESS MODE IS SEQUENTIAL,

6-8
ALTERNATE RECORD KEY, 6-9
ALTERNATE RECORD KEY WITH

DUPLICATES, 6-9
ASSIGN TO, 6-8
RLE STATUS, 6-8
OPTIONAL, 6-8

First Edition X-3

COBOL85 Reference Guide

ORGANIZATION IS INDEXED, 6-9
ORGANIZATION IS RELATIVE, 6-9
ORGANIZATION IS SEQUENTIAL

6-8
RECORD KEY IS, 6-9
RELATIVE KEY, 6-9
RESERVE, 6-8

File-description-entry, 7-6, P-3
BLOCK CONTAINS, 7-9
CODE-SET, 7-9
COMPRESSED, 7-7
DATA RECORDS, 7-9
EXTERNAL, 7-8
format, 7-6
LABEL RECORDS, 7-10
RECORD, 7-10
RECORDING MODE, 7-13
rules, 7-6
UNCOMPRESSED, 7-7
VALUE OF FILE-ID, 7-14

File-name, P-3
file-name, 4-15

File-naming conventions, 2-3
FILLER, 7-21
Fixed-length record, P-3
Fixed-length records, tape files, 12-2
Floating insertion characters, 7-36
Floating string, 7-36
Floating-point data item, 4-25
Format notation, 4-5

ANSI notation, 4-5
braces, 4-6
brackets, 4-6
clause, 4-7
data-name, 4-6
ellipsis, 4-6
entry, 4-7
examples, 4-6
format punctuation, 4-6
level-numbers, 4-6
multiple formats, 4-7
Prime extensions to ANSI notation,

4-6
special characters, 4-6
statement, 4-7
underscore, 4-7
words, 4-5

Formats, COBOL85, A-1
-FORMATTED_DISPLAY compiler

option, 2-8
FORMS, 1-6
-FULLHELP compiler option, 2-8
Fullword, P-4

GIVING, 8-7
GO TO, 8-25
GOBACK, 8-26

interprogram communication, 13-5
Group item, 4-20

H
Halfword, P-4
HDRl

see: Header 1 label record
HDR2

see: Header 2 label record
Header 1 label record, 12-8
Header 2 label record, 12-8
-HELP compiler option, 2-8
HELP subcommand of BIND, 3-4
-HEXADDRESS compiler option, 2-9
Hexadecimal addition table, B-37
Hexadecimal and decimal conversion,

B-36
HIGH-VALUES, 4-13

/

IDENTTFICATION DIVISION, 5-1
DATE-COMPILED, 5-2
example, 5-3
format, 5-1
PROGRAM-ID, 5-2
rules, 5-2

IF, 8-26
Imperative statement, P-4
Implementor-names, 4-14
Implicit scope terminators, 8-5
Index, P-4
INDEX, 4-24
Index data item, 4-46, P-4
Index item, 4-24
INDEXED BY, 4-46
Indexed files, 10-1

access modes, 10-2
AT END condition, 10-4
CLOSE, 10-10
common operations, 10-5
concepts, 10-1
current record pointer, 10-3
DATA DIVISION, 10-9
DELETE, 10-10
ENVIRONMENT DIVISION, 10-7
example, 10-24
exception conditions, 10-5
file formats, 10-3

file status, 10-3
FILE-CONTROL, 10-7
INPUT-OUTPUT SECTION, 10-7
INVALID KEY condition, 10-3
NOT AT END condition, 104
NOT INVALID KEY condition, 104
OPEN, 10-11
organization, 10-2
primary record key, 10-2
PROCEDURE DIVISION, 10-9
READ, 10-13
REWRITE, 10-17
secondary (alternate) record key, 10-2
SEEK, 10-19
START, 10-20
WRITE, 10-23

Index-name, 4-16, 4-46, P-4
Input procedure, 14-1, P-4
INPUT-OUTPUT SECTION, 6-8

indexed files, 10-7
relative files, 11-8
tape files, 12-14

Input-output statements, permissable,
B-35

INSPECT, 8-29
Interactive environment, 1 -3
Interprogram communication, 13-1

CALL, 13-3
called program, 13-1
calling program, 13-1
CANCEL, 13-4
Data type compatibility, 13-11
ENTER, 13-5
example, 13-6
EXIT PROGRAM, 13-5
GOBACK, 13-5
language interfaces, 13-10
LINKAGE SECTION, 13-1
linking programs, 13-6
PROCEDURE DIVISION, 13-2
running programs, 13-6

INVALID KEY condition
indexed files, 10-3
relative files, 11 -4

I-O-CONTROL, 6-12
format, 6-12
merge operations, 14-2
MULTIPLE FILE TAPE CONTAINS,

6-12
RERUN, 6-12
rules, 6-12
SAME RECORD AREA, 6-12
SAME SORT AREA, 6-12
SAME SORT-MERGE AREA, 6-12
sort operations, 14-2
tape files, 12-14

X-4 First Edition

" >

JUSTIFIED, 7-25

K
Key, P-4
Key of reference, P-4
Key words, 4-5, 4-12

LABEL command, 12-6
LABEL RECORDS, 7-10

tape files, 12-17
Language interfaces, 1-4

data type compatibility, 13-11
interprogram communication, 13-10

Language standards, 1-1
Level indicator, P-4
Level-number, 4-15, 7-18, P-4

level-number 01, 7-19
level-number 66, 7-20
level-number 77, 7-19
level-number 88, 7-19

Libraries, 1-4
Library files, J-l
LIBRARY subcommand of BIND, 3-2
LINKAGE SECTION, 7-4

format, 7-4
interprogram communication, 13-1
rules, 7-5

Linker, P-4
Linking programs, 3-1

interprogram communication, 13-6
sort and merge, 14-2

-LISTING compiler option, 2-9
Literals, 4-17

continuation of, 4-19
nonnumeric, 4-17
numeric, 4-19

LOAD subcommand of BIND, 3-1
Loading and executing with SEG, M-l
Logical operator, 4-38, P-4
LOW-VALUES, 4-13

M
Magnetic tape labels, 12-8

EOF1/EOF2, 12-9
EOV1/EOV2, 12-9
format, 12-8
HDRl, 12-8
HDR2, 12-8

VOLl, 12-8
-MAP compiler option, 2-9, K-l
MAP subcommand of BIND, 3-3
-MAPSORT compiler option, 2-9
-MAPWIDE compiler option, 2-9
MEMORY SIZE, 6-3
MERGE, 8-36

merge operations, 14-5
Merge file, P-5
Merge operations, 14-1

DATA DIVISION, 14-4
ENVIRONMENT DIVISION, 14-2
example, 14-9
FILE SECTION, 14-4
I-O-CONTROL 14-2
linking programs, 14-2
MERGE, 14-5
output procedure, 14-1
PROCEDURE DIVISION, 14-4
strategy, 14-2

MIDASPLUS, 1-5, P-5
Mnemonic-names, 4-16, 6-5, P-5
Mnemonics, 4-17
MOVE, 8-36
Multidimensional tables, 4-48
Multiple condition, 4-39
MULTIPLE FILE TAPE CONTAINS,

6-12, 12-14
Multiple file tapes, 12-5

positioning for input, 12-6
positioning for output, 12-5

MULTIPLY, 8-39
Multivolumc tape files, 12-4

N
Native character set, P-5
Negated combined condition, 4-38
Negated simple conditions, 4-38
Nested IF statement

definition, 8-27
structure, 8-28

-NO_ANSI_OBSOLETE compiler
option, 2-5

-NO_BIG_TABLES compiler option,
2-5

-NO_BINARY compiler option, 2-6
-NO_CALCINDEX compiler option, 2-6
-NO_COMP compiler option, 2-6
-NO_CORRMAP compiler option, 2-7
-NO_DATA_REPOPT compiler option,

2-7
-NO_DEBUG compiler option, 2-7
-NO_ERRORFILE compiler option, 2-7
-NO_ERRTTY compiler option, 2-7

Index

-NO_EXPLIST compiler option, 2-8
-NO_FILE_ASSIGN compiler option,

2-8
-NO_FORMATTED_DISPLAY

compiler option, 2-8
-NO_HEXADDRESS compiler option,

2-9
-NO_LISTING compiler option, 2-9
-NO_MAP compiler option, 2-9
Noncontiguous data items, 7-3
Noncontiguous items, P-5
Nonnumeric comparisons, 4-35
-NO_OFFSET compiler option, 2-10
-NO_PRODUCTION compiler option,

2-10
-NO_RANGE compiler option, 2-11
-NO_SIGNAL_ERRORS compiler

option, 2-11
-NO_SLACKBYTES compiler option,

2-12
-NO_STANDARD compiler option,

2-12
-NO_STATISTICS compiler option,

2-13
-NO_STORE_OWNER_FIELD compiler

option, 2-13
-NO_SYNTAXMSG compiler option,

2-14
NOT AT END condition

indexed files, 10-4
relative files, 11-5
sequential files, 9-3

NOT INVALID KEY condition
indexed files, 10-4
relative files, 11-4

NOT ON SIZE ERROR, 8-8
NOTE, 8-40
-NOJVARYING compiler option, 2-14
-NO_XREF compiler option, 2-14
Numeric comparisons, 4-35
Numeric edited item, 4-21
Numeric item, 4-20

OBJECT-COMPUTER, 6-3
alphabet-name, 6-3
computer-name, 6-3
example, 6-4
format, 6-3
MEMORY SIZE, 6-3
PROGRAM COLLATING

SEQUENCE, 6-3
rules, 6-3
SEGMENT-LIMIT, 6-3

First Edition X-5

COBOL85 Reference Guide

Obsolete language elements, G-l
OCCURS, 7-26
OCCURS DEPENDING ON, 7-28

example, 7-29
variable occurrence data item, 7-28

-OFFSET compiler option, 2-10
ON SIZE ERROR, 8-8
OPEN, 8-41

file availability, B-34
indexed files, 10-11
relative files, 11-12
sequential files, 9-5
tape files, 12-21

OPEN status codes
indexed files, 10-13
relative files, 11-13
sequential files, 9-7

Operand combinations with SET, 8-59
Operating environment, 1-2
Operational signs, 4-29
-OPTIMIZE compiler option, 2-10
OPTIONAL 6-8
ORGANIZATION IS INDEXED, 6-9
ORGANIZATION IS RELATIVE, 6-9
ORGANIZATION IS SEQUENTIAL,

6-8
Output procedure, 14-1, P-5

PACKED-DECIMAL, 4-23
Paragraph, P-5
Paragraph header, P-5
Paragraph-name, 4-16, P-5
Parentheses as separator, 4-8
Pathname, P-5
PERFORM, 8-41
Period as separator, 4-8
Phantom environment, 1-3
Phrase, P-6
PICTURE, 7-30

data categories, 7-31
data item size, 7-32
editing rules, 7-34
symbol functions, 7-32

PICTURE editing rules
character insertion, 7-34
character suppression and replacement,

7-34
fixed insertion, 7-35
floating insertion, 7-36
simple insertion, 7-35
special insertion, 7-35
suppression and replacement, 7-37

Picture-string, 4-11

X-6 First Edition

PRIFORMA, 1-6
Primary index, P-6
Primary record key, 10-2, P-6
Prime Extended Character Set

(Prime ECS), 4-10
direct entry, 4-10
octal notation, 4-10

Prime extended character set
(Prime ECS), table, B-8 to B-16

Prime extensions, 1-1, F-3
PRIMOS error messages, C-3
PRIMOS SORT, 1-5
PRISAM, 1-6, P-6
PRISAM status codes, D-l
PROCEDURE DIVISION, 8-1

arithmetic statements, 8-6
declarative sections, 8-4
example, 8-75
format, 8-1
indexed files, 10-9
interprogram communication, 13-2
merge operations, 14-4
procedure statements, 8-9
relative files, 11-10
rules, 8-2
scope terminators, 8-4
sequential files, 9-4
sort operations, 14-4
tape files, 12-20
verbs, 8-9

Procedure statements, 8-9
Procedure-name, P-6
-PRODUCTION compiler option, 2-10
PROGRAM COLLATING SEQUENCE,

6-3
Program environments

batch, 1-3
interactive, 1-3
phantom, 1-3

Program example, 4-4
Program format, 4-3
PROGRAM-ID, 5-2
Programmer-defined words, 4-14

alphabet-names, 4-16
class-names, 4-16
condition-names, 4-15
data-names, 4-15
file-names, 4-15
index-names, 4-16
level-numbers, 4-15
mnemonic-names, 4-16
paragraph-names, 4-16
section-names, 4-16
segment-numbers, 4-16

Pseudo-text, 4-8, 15-2
Pseudo-text delimiter as separator, 4-8

Punctuation, 4-8
Punctuation character, P-6

Q
Qualification of names, 4-29
Qualified data-name, P-6
Qualifiers, 4-29, P-6
QUIT subcommand of BIND, 3-4
Quotation mark as separator, 4-8
QUOTES, 4-13

f?
Random access, P-6
-RANGE compiler option, 2-10
-RANGE_NON_FATAL compiler

option, 2-11
READ, 8-50

indexed files, 10-13
relative files, 11-14
sequential files, 9-7
tape files, 12-22

READ status codes
indexed files, 10-17
relative files, 11-17
sequential files, 9-9

READY TRACE, 8-51
RECORD, 7-10
RECORD KEY IS, 6-9
Record-description-entry, 7-16, P-6

BLANK WHEN ZERO, 7-22
data-name, 7-21
EXTERNAL, 7-23
FILLER, 7-21
format, 7-17
JUSTIFIED, 7-25
level-number, 7-18
OCCURS, 7-26
PICTURE, 7-30
REDEFINES, 7-38
RENAMES, 7-40
rules, 7-18
SIGN, 741
SYNCHRONIZED, 743
USAGE, 7-43
VALUE, 745

RECORDING MODE, 7-13
REDEFINES, 7-38
Reference tables, list of, B-l
Relation condition, 4-34
Relative files, 11-1

access modes, 11-3
AT END condition, 114

* >

1

'

Index

r

r
-

CLOSE, 11-10
common operations, 11-5
current record pointer, 11-3
DATA DIVISION, 11-9
DELETE, 11-11
ENVIRONMENT DIVISION, 11-7
example, 11-22
exception conditions, 11-5
file formats, 11-3
file status, 11-3
FILE-CONTROL 11-8
INPUT-OUTPUT SECTION, 11-8
INVALID KEY condition, 114
NOT AT END condition, 11-5
NOT INVALID KEY condition, 11-4
OPEN, 11-12
organization, 11-2
PROCEDURE DIVISION, 11-10
READ, 11-14
relative key, 11-3
REWRITE, 11-17
SEEK, 11-18
START, 11-19
WRITE, 11-20

Relative key, 11-3
relative files, 11-3

RELATIVE KEY, 6-9
RELEASE, 8-53

sort operations, 14-11
RELOAD subcommand of BIND, 34
RENAMES, 7-40
Required word, 4-12
RERUN, 6-12
RESERVE, 6-8
Reserved words, 4-12, P-6

connectives, 4-14
figurative constants, 4-13
key words, 4-12
optional words, 4-13
required words, 4-12
special-character words, 4-12
table of, B-5 to B-7

RESET TRACE, 8-53
RETURN, 8-53

sort operations, 14-12
REWRITE, 8-53

indexed files, 10-17
relative files, 11-17
sequential files, 9-9

REWRITE status codes
indexed files, 10-19
relative files, 11-18
sequential files, 9-10

-RMARGIN compiler option, 2-11
ROUNDED, 8-7
Runfile or run unit, P-6

Running programs, 3-5
file assignments at runtime, 3-6, N-1
interprogram communication, 13-6
switch settings at runtime, 3-6
with SEG, M-3

Runtime error messages, C-2

SAME RECORD AREA, 6-12
SAME SORT AREA, 6-12
SAME SORT-MERGE AREA, 6-12
Scope terminators, 84

arithmetic, 8-9
END-ADD, 8-13
END-CALL, 13-3
END-COMPUTE, 8-16
END-DELETE, 10-11. 11-11
END-DIVIDE, 8-23
END-IF, 8-26, 8-28
END-MULTIPLY, 840
END-PERFORM, 843, 849
END-READ, 9-9,10-15, 11-15
END-RETURN, 14-13
END-REWRITE, 9-10, 10-19, 11-18
END-SEARCH, 8-55
END-START, 10-21, 11-20
END-STRING, 8-66
END-SUBTRACT, 8-68
END-UNSTRING, 8-71
END-WRITE, 9-12, 10-24. 11-22
explicit, 84
implicit, 8-5

SD
see: sort-merge-file-decription-entry

SEARCH, 8-54
Search rules

establishing, 15-5
using, 15-6
with COPY, 15-5

Secondary record key, 10-2
Section, P-7
Section-name, 4-16, P-7
SEEK, 8-59

indexed files, 10-19
relative files, 11-18

SEG, 1-5, M-l
SEGMENT-LIMIT, 6-3
Segment-number, 4-16
SELECT, 6-8
Semicolon as separator, 4-8
Sentence, P-7
Separators, 4-8

comma, 4-8
formation rules, 4-8

parentheses, 4-8
period, 4-8
pseudo-text delimiter, 4-8
quotation mark, 4-8
semicolon, 4-8
space, 4-8

Sequential access, P-7
Sequential files, 9-1

access mode, 9-1
AT END condition, 9-3
CLOSE, 94
common operations, 94
concepts, 9-1
current record pointer, 9-2
example, 9-12
exception conditions, 9-3
file formats, 9-2
file status, 9-2
NOT AT END condition, 9-3
OPEN, 9-5
organization, 9-1
PROCEDURE DIVISION, 94
READ, 9-7
REWRITE, 9-9
WRITE, 9-10

SET, 8-59
operand combinations, 8-59

SIGN, 741
Sign condition, 4-38
-SIGNALERRORS compiler option,

2-11
-SILENT compiler option, 2-11
Simple conditions, 4-34
Single-precision floating-point item, 4-25
SKIP, 8-61
-SLACKBYTES compiler option, 2-12
SORT, 8-62

sort operations, 14-14
Sort file, P-7
Sort operations, 14-1

DATA DIVISION, 144
ENVIRONMENT DIVISION, 14-2
example, 14-20
FILE SECTION, 144
input procedure, 14-1
input procedures and USING, 14-18
I-O-CONTROL 14-2
linking programs, 14-2
output procedure, 14-1
output procedures and GIVING, 14-19
PROCEDURE DIVISION, 14-4
RELEASE, 14-11
RETURN, 14-12
SORT, 14-14
strategy, 14-2

First Edition X-7

COBOL85 Reference Guide

Sort-merge-file-dcscription-entry (SD),
144, P-7

Source Level Debugger (DBG), 1-5, E-1
Source text manipulation

COPY, 15-1
COPY files and search rules, 15-5

SOURCE-COMPUTER, 6-2
format, 6-2
rules, 6-2
WITH DEBUGGING MODE, 6-2

Space as separator, 4-8
-SPACE compiler option, 2-12
SPACES, 4-13
Special-character words, 4-12
SPECIAL-NAMES, 6-5

ALPHABET, 6-7
alphabet-name, 6-7
CLASS, 6-7
class-name, 6-7
CONSOLE, 6-6
DECIMAL-POINT IS COMMA, 6-8
format, 6-5
mnemonic-names, 6-5
rules, 6-5
switch-names, 6-5

-STANDARD compiler option, 2-12,
F-3

Standard-1 ASCH character set, B-17
Standard-2 ASCH character set, B-28 to

B-31
START, 8-62

indexed files, 10-20
relative files, 11-19

START status codes
indexed files, 10-21
relative files, 11 -20

Statement, P-7
Static runfile, P-7
-STATISTICS compiler option, 2-12
Status codes, 4-57

CLOSE sequential files, 9-5
DELETE indexed files, 10-11
DELETE relative files, 11-12
OPEN indexed files, 10-13
OPEN relative files, 11-13
OPEN sequential files, 9-7
PRISAM, D-l
READ indexed files, 10-17
READ relative files, 11-17
READ sequential files, 9-9
REWRITE indexed files, 10-19
REWRITE relative files, 11-18
REWRITE sequential files, 9-10
START indexed files, 10-21
START relative files, 11-20
WRITE indexed files, 10-24

X-8 First Edition

WRITE relative files, 11-22
WRITE sequential files, 9-12

STOP, 8-63
-STORE_OWNER_FIELD compiler

option, 2-13
STRING, 8-64
Subscript, 4-44, P-7
Subscripting

arithmetic expression, 4-47
data-name, 4-47
direct indexing, 448
literal, 4-47
qualified data-names, 449
relative indexing, 448

SUBTRACT, 8-67
Switch settings at runtime, 3-6
Switch-names, 6-5
Switch-status condition, 4-37
SYNCHRONIZED, 743
SyncSort/PRIME, 1-5
-SYNTAXMSG compiler option, 2-14
System resources

BIND, 1-5
editors, 14
FORMS, 1-6
language interfaces, 14
libraries, 1-4
MIDASPLUS, 1-5
PRIFORMA, 1-6
PRIMOS SORT, 1-5
PRISAM, 1-6
SEG, 1-5
Source Level Debugger (DBG), 1-5
SyncSort/PRIME, 1-5

Table, P-7
Table element, 4-44, P-7
Table handling

example, 4-50
INDEXED BY, 446
multidimensional tables, 4-48
subscript, 444
table definition, 444
table element, 4-44
table initialization, 4-45
types of subscripting, 446
using subscripts, 446

Tape drive assignment, 12-13
Tape file assignment

with -FILE_ASSIGN, 12-13
within program, 12-13

Tape files
BLOCK CONTAINS, 12-15

blocking strategy, 12-2
CLOSE, 12-20
CODE-SET, 12-16
DATA DIVISION, 12-15
ENVIRONMENT DIVISION, 12-14
error reporting, 12-24
example, 12-29
executing programs, 12-13
fixed-length records, 12-2
INPUT-OUTPUT SECTION, 12-14
I-O-CONTROL 12-14
LABEL command, 12-6
LABEL RECORDS, 12-17
multiple file tapes, 12-5
multivolume, 124
OPEN, 12-21
PROCEDURE DIVISION, 12-20
READ, 12-22
structure, 12-1
tape labels, format, 12-8
unlabeled, 12-12
VALUE OF RLE-ID, 12-17
variable-length records, 12-3
WRITE, 12-23

-TIME compiler option, 2-12

u
Unary operator, P-8
UNCOMPRESSED, 7-7
Unlabeled magnetic tapes, 12-12
UNSTRING, 8-69
USAGE, 743
USE, 8-73

V mode, 1-2
VALUE, 745
VALUE OF FILE-ID, 7-14

with tape files, 12-13, 12-17
Variable occurrence data item, 4-43, P-8

example, 7-29
OCCURS DEPENDING ON, 7-28

Variable-length records, P-8
defined, 4-42
example, 7-29, O-l
file formats, 443
file types, 4-42
RECORD IS VARYING clause, 4-43
RECORDING MODE IS V clause,

4-43
specifying in CREATK 4-44
specifying in DDL, 444

Index

specifying in program, 4-43
tape files, 12-3
variable occurrence data items, 4-43
-VARYING compiler option, 443

Variable-length table
see: Variable occurrence data item

-VARYING compiler option, 2-14
VOLl

see: Volume 1 label record
Volume 1 label record, 12-8

w
WITH DEBUGGING MODE, 6-2
WITH DUPLICATES, 6-9
WITH NO REWIND

CLOSE, 12-21
OPEN, 12-22

Word, P-8
Word formation, 4-11
WORKING-STORAGE SECTION, 7-3

format, 7-3
rules, 7-3

WRITE, 8-74
indexed files, 10-23
relative files, 11-20
sequential files, 9-10
tape files, 12-23

WRITE status codes
indexed files, 10-24
relative files, 11-22
sequential files, 9-12

X
-XREF compiler option, 2-14, Ll
-XREFSORT compiler option, 2-14

Z
Zero suppression, 7-38
ZEROES, 4-13

First Edition X-9

Surveys

* "

Reader Response Form
C0B0L85 Reference Guide
DOC10166-1LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user publications.

1. How do you rate this document for overall usefulness?

□ e x c e l l e n t □ v e r y g o o d □ g o o d □ f a i r □ p o o r

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

□ M u c h b e t t e r □ S l i g h t l y b e t t e r □ A b o u t t h e s a m e
I | M u c h w o r s e □ S l i g h t l y w o r s e □ C a n t j u d g e

5. Which other companies' manuals have you read?

Name:.
Positions
Company:.
Address:

.Postal Code:.

First Class Permit »531 Natick. Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime.
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

")

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Contents
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	About This Book
	xiii
	xiv
	xv
	xvi
	xvii
	xviii
	Chapter 1
	Overview of COBOL85
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	Chapter 2
	Compiling the Program
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	Chapter 3
	Linking and Executing Programs
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	Chapter 4
	Elements of COBOL85
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	Chapter 5
	The IDENTIFICATION DIVISION
	5-1
	5-2
	5-3
	Chapter 6
	The ENVIRONMENT DIVISION
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	Chapter 7
	The DATA DIVISION
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	Chapter 8
	The PROCEDURE DIVISION
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	8-79
	8-80
	8-81
	Chapter 9
	Sequential Files
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	Chapter 10
	Indexed Files
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	Chapter 11
	Relative Files
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	Chapter 12
	Tape Files
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	Chapter 13
	Interprogram Communication
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	13-7
	13-8
	13-9
	13-10
	13-11
	13-12
	Chapter 14
	The SORT and MERGE Verbs
	14-1
	14-2
	14-3
	14-4
	14-5
	14-6
	14-7
	14-8
	14-9
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	Chapter 15
	Source Text Manipulation
	15-1
	15-2
	15-3
	15-4
	15-5
	15-6
	Appendices
	Appendix A
	COBOL85 Formats
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	Appendix B
	Reference Tables
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	B-23
	B-24
	B-25
	B-26
	B-27
	B-28
	B-29
	B-30
	B-31
	B-32
	B-33
	B-34
	B-35
	B-36
	B-37
	B-38
	Appendix C
	Error Messages
	C-1
	C-2
	C-3
	C-4
	Appendix D
	PRISAM to COBOL85 Status Code Mapping
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	Appendix E
	The Debugger Interface
	E-1
	E-2
	E-3
	Appendix F
	Prime Support of the ANSI Standard
	F-1
	F-2
	F-3
	F-4
	Appendix G
	Obsolete Language Elements
	G-1
	G-2
	Appendix H
	Conversion from CBL to COBOL85
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	H-8
	H-9
	H-10
	H-11
	H-12
	H-13
	H-14
	H-15
	H-16
	H-17
	H-18
	H-19
	Appendix I
	Implementation-dependent Features of COBOL85
	I-1
	I-2
	COBOL85 Library Files
	J-1
	J-2
	J-3
	Appendix K
	The MAP Option
	K-1
	K-2
	K-3
	K-4
	K-5
	K-6
	K-7
	Appendix L
	The XREF Option
	L-1
	L-2
	L-3
	L-4
	L-5
	L-6
	Appendix M
	Loading and Executing With SEG
	M-1
	M-2
	M-3
	M-4
	Appendix N
	File Assignments With -FILE_ASSIGN
	N-1
	N-2
	Appendix O
	COBOL85 Sample Programs
	O-1
	O-2
	O-3
	O-4
	O-5
	O-6
	O-7
	O-8
	O-9
	O-10
	O-11
	O-12
	O-13
	O-14
	O-15
	O-16
	O-17
	O-18
	O-19
	O-20
	Appendix P
	Glossary
	P-1
	P-2
	P-3
	P-4
	P-5
	P-6
	P-7
	P-8
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	Surveys
	
	

